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Abacus Gestures: A Large Set of Math-Based Usable Finger-Counting
Gestures for Mid-Air Interactions
MD EHTESHAM-UL-HAQUE, Pennsylvania State University, USA
SYED MASUM BILLAH, Pennsylvania State University, USA
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Fig. 1. Illustrations of the proposed Abacus Gestures—a set of 100 mid-air gestures, each representing a number between 0
to 99—that users can make with ten fingers. (a) shows the mapping of base numbers (1, 5, 10, and 50) to different fingers:
the worth of the index, the middle, the ring, or the little finger is 1 on the dominant hand and 10 on the non-dominant hand;
and the worth of thumb is 5 and 50, respectively. (b) shows how a user makes a series of Abacus Gestures in our system.
For example, to make an Abacus Gesture, 31, the user is facing a webcam and opening their index finger on the dominant
hand (worth 1) and the index, middle, and ring fingers on the non-dominant hand (each worth 10), thus summing to 31
(=1+10+10+10).

Designing an extensive set of mid-air gestures that are both easy to learn and perform quickly presents a significant challenge.
Further complicating this challenge is achieving high-accuracy detection of such gestures using commonly available hardware,
like a 2D commodity camera. Previous work often proposed smaller, application-specific gesture sets, requiring specialized
hardware and struggling with adaptability across diverse environments. Addressing these limitations, this paper introduces
Abacus Gestures, a comprehensive collection of 100 mid-air gestures. Drawing on the metaphor of Finger Abacus counting,
gestures are formed from various combinations of open and closed fingers, each assigned different values. We developed an
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algorithm using an off-the-shelf computer vision library capable of detecting these gestures from a 2D commodity camera feed
with an accuracy exceeding 98% for palms facing the camera and 95% for palms facing the body. We assessed the detection
accuracy, ease of learning, and usability of these gestures in a user study involving 20 participants. The study found that
participants could learn Abacus Gestures within five minutes after executing just 15 gestures and could recall them after
a four-month interval. Additionally, most participants developed motor memory for these gestures after performing 100
gestures. Most of the gestures were easy to execute with the designated finger combinations, and the flexibility in executing the
gestures using multiple finger combinations further enhanced the usability. Based on these findings, we created a taxonomy
that categorizes Abacus Gestures into five groups based on motor memory development and three difficulty levels according
to their ease of execution. Finally, we provided design guidelines and proposed potential use cases for Abacus Gestures in the
realm of mid-air interaction.
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1 INTRODUCTION
Recent technological advancements in virtual reality, augmented reality, smart glasses, and large displays have
propelled mid-air interactions into the spotlight [39]. These interactions hinge on gestures that the system can
detect accurately, and that users can learn, remember, and execute easily. Moreover, to support various tasks and
actions, like navigation, selection, and activation, these gestures must possess sufficient expressiveness [39, 56].
However, the creation of a large repertoire of such gestures presents significant challenges from technical, usability,
and design perspectives. Technically, the system must recognize these gestures with high accuracy and reduce the
incidence of false positives [65]. In terms of usability, the gestures must be simple, socially acceptable, and allow
users to learn, remember, and execute them with ease [61]. From a design perspective, the limited availability of
relevant real-world metaphors complicates the creation of a large set of such gestures [46, 70]. Assessing these
gestures’ effectiveness—for instance, recognition accuracy, ease of use, and learnability—without reliance on
specific applications also presents a design challenge [56].

Prior work sought to improve the recognition accuracy of mid-air gestures by employing specialized hardware,
such as 3D hand trackers and body-mounted devices [39]. However, the need for such hardware could limit their
broad use, as not all users might have access to these devices, thereby potentially hampering the practicality and
usability of mid-air gestures in everyday applications. To tackle usability and design challenges linked to mid-air
gestures, researchers have primarily utilized gesture elicitation studies [56]. In these studies, users envision new
gestures in response to a shown action without considering how a system could recognize these gestures. An
agreement score is then used to amalgamate all user-envisioned gestures into a final set [85]. Such a process
tends to yield gestures that are generally easy to learn, remember, and execute; however, it often results in sets
that are not only impractical but also limited—typically, to around 20 gestures. This constraint narrows the
range of expressiveness, thereby limiting the the practicality and usability of mid-air gestures in real-world
applications [39, 56].

This paper aims to address the aforementioned challenges. We introduce Abacus Gestures, a comprehensive
set of 100 mid-air gestures, which are easily detectable by a single commodity camera. This set, based on the
opening and closing of fingers, draws its metaphor from the classical finger abacus counting technique, known
as Chisanbop or Fingermath [45, 81]. Users can represent numbers from 0 to 99 by various combinations of
open and closed fingers, with each number interpreted as a distinct gesture. As illustrated in Figure 1a, Finger
Abacus assigns specific values to each of the ten fingers. On the dominant hand, every finger is worth 1, except
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for the thumb, which is valued at 5. Conversely, each finger on the non-dominant hand has a value of 10, with
the exception of the thumb, which is worth 50. An open finger contributes its value to the count; a closed finger
does not. The final number, i.e., an abacus gesture, is the sum of the values of all open fingers.
Finger Abacus, as a mathematical counting technique, possesses several distinctive and beneficial properties.

First, counting and performing arithmetic operations with Finger Abacus is inherently a bimanual mid-air process.
Users hold their hands aloft, open or close their fingers, and count [45]. This bimanual process naturally suits
hands-free interaction domains, such as virtual reality. Second, this technique permits users to perform simple
arithmetic operations ubiquitously, without any equipment [2, 49]. These gestures can be detected using a single
camera, for example, using palm gestures to take selfies on smartphones [4]. This detection can serve as an
input to camera-based mid-air interaction systems, a possibility we examine in this work. Third, Finger Abacus
is simple and easy to learn, even before the formal introduction of arithmetic notations [2, 53, 55, 71]. Studies
have revealed that children who master finger-based number representation from an early age tend to develop
significantly advanced mathematical skills over time [8, 24]. Finally, Finger Abacus enables users to perform
rapid arithmetic operations, such as the manipulation of two-digit numbers simultaneously [3] and the addition
of 20 single-digit numbers [1].

To detect Abacus Gestures, we designed an algorithm (Section 4) that uses 21 keypoints for each hand—one for
the wrist and four for each finger—provided by an off-the-shelf computer vision library [91]. We evaluated the
detection accuracy and usability of Abacus Gestures by conducting a user study with 20 participants (Section 5).

Our results revealed that this algorithm could detect Abacus Gestures with an accuracy surpassing 98% when
the palms face the camera and 95% when the backs of the hands face the camera. Additionally, the algorithm is
rotation invariant (along the X-Y plane) and can accommodate a variety of hand shapes and finger dexterity. Our
study also discovered that participants were able to learn the necessary finger combinations to perform Abacus
Gestures rapidly – in just five minutes after executing 15 gestures. They also developed motor memory for most
of the Abacus Gestures shortly after performing 100 Abacus Gestures.
Drawing on the findings, we devised a taxonomy (Section 6) divided into five categories—visual match,

mnemonic, unimanual, bimanual symmetric, and bimanual asymmetric (Table 2)—and three difficulty levels: easy,
medium, and hard (Table 3). This taxonomy associates the ease with which users can develop motor memory for
different Abacus Gestures and groups various gestures by their difficulty levels. Such categorization will inform
HCI researchers and system designers in assigning Abacus Gestures with specific actions or tasks. For instance,
users are more likely to quickly develop motor memory for gestures that visually match their corresponding
finger combinations, such as 0, 1, 2, 3, and 4, which are also the simplest gestures to perform. Furthermore, we
propose several scenarios in which Abacus Gestures can facilitate mid-air interaction (Section 7.2).

Finally, to assess the memorability of our gestures, we sent a follow-up online survey to the participants four
months after the study (Section 6.1.3). The responses confirmed that all participants could vividly recall the
Abacus Gestures, with some even adopting these gestures for their routine mental arithmetic operations. These
results strongly indicate that the proposed gestures, despite comprising a large set, are easy to learn, remember,
and execute.

In summary, this work contributes in the following ways:
• We proposed Finger Abacus as a metaphor to design a large-scale, math-based gesture set for mid-air
interaction.
• We developed a rotation and scale invariant algorithm to detect Abacus Gestures with commodity cameras.
• We conducted an evaluation of Abacus Gestures with 20 participants and categorized the Abacus Gestures
according to their ease of motor memory development and ease of execution.
• We provided design guidelines and potential use cases related to the application of Abacus Gestures for
mid-air interaction.
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2 BACKGROUND AND RELATED WORK
This section describes prior research on number-counting techniques, gesture design challenges, and the detection
of mid-air gestures.

2.1 Number Counting Techniques
The ability to comprehend numbers is a basic human instinct, inherent even in the early stages of human
development [26]. The human brain is naturally capable of processing numbers and understanding arithmetic
operations, a faculty often referred to as ‘Number Sense’ [27]. Counting, a fundamental arithmetic operation,
emerges naturally at a young age, even without formal numerical knowledge [31]. Given the ubiquity and
necessity of number processing, various counting methods and tools have been proposed and utilized since
ancient times.

2.1.1 Abacus. The abacus is a mathematical tool that predates the adoption of written numeral systems [80]. It
comprises rows of movable beads on wires, with each bead representing a number for performing arithmetic
operations such as counting, addition, and subtraction. Different versions of the abacus have been utilized
worldwide for mathematical calculations.

Studies suggest that learning to calculate with an abacus can enhance mental calculation capacity. Even without
a physical abacus, individuals can perform mental calculations by visualizing an abacus, a method known as
Abacus-based mental calculation (AMC) [79, 80]. AMC is a high-level cognitive skill, and long-term AMC training
has been associated with improved numerical memory capacity [36, 87] and effective memory retrieval for
complex tasks [20, 43, 80].
In contemporary times, the abacus is often used in preschools and elementary schools as a teaching tool for

numerical systems and arithmetic operations. Moreover, it remains in use as a scoring device for table games and
as a counting tool for visually impaired individuals who cannot use calculators [16].

2.1.2 Finger Abacus. Finger Abacus, also known as Chisanbop or finger math, is a finger-counting technique
originating from Korea that draws inspiration from the Abacus system [45, 81]. This method assigns specific values
to each of the ten fingers, enabling users to count numbers from 0 to 99 and perform arithmetic operations [53].
While Finger Abacus only accommodates two-digit numbers, a limitation compared to a physical abacus, it

allows users to perform simple arithmetic operations without any additional tools. This makes it sufficient for
everyday calculations and beneficial for teaching children arithmetic operations. Moreover, finger counting has
been found to be a powerful tool that aids in teaching complex numerical tasks to children [8, 24].
Experienced users of Finger Abacus can reach a level of speed and efficiency comparable to that of physical

abacus users [3, 23]. These finger-counting techniques facilitate swift mental calculations and are utilized by
participants in mental math competitions, such as the Mental Calculation World Cup [3, 83, 84].

In the present study, we propose the various finger combinations from the Finger Abacus technique as a large,
usable gesture set for mid-air interaction.

2.2 Finger-Counting Gestures: A Primitive Finger Abacus Technique
Finger counting gestures, which can be considered a primitive version of the Finger Abacus, involve people
counting numbers using their open fingers (the maximum number possible is 10).

2.2.1 Applications. The most prevalent application of finger-counting gestures is in selecting a menu item [10–
13, 18, 42, 90]. Each menu item is assigned a number (for example, from 1 to 4), and users raise the corresponding
number of fingers to select it.
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Menus can contain up to 10 items in various forms. For instance, on distant TVs, the menu items may include
play or pausemedia controls [13, 42]. In a car’s dashboard, themenu items could be controls formedia, temperature,
fan speed, or navigation [90], while touchless kiosks offer a range of on-screen items [13].

In addition, users can select items from hierarchical menus. For example, users can first select one of the five
top-level menu items by raising [13] or touching the display [10, 11] with 1 to 5 fingers of their non-dominant
hand. After selecting the top-level menu item, users can then choose one of its five sub-menu items by raising or
touching the display with 1 to 5 fingers of their dominant hand.

2.2.2 Gesture Recognition. Various techniques are employed to recognize the number of raised fingers in prior
work, including i) multi-touch displays [10, 11]; ii) RGB cameras [42]; iii) RGB cameras with finger-mounted
tags or augmentations, such as stickers [40] or LED lights [18]; iv) RGBD cameras (RGB cameras with depth
sensors) [12], like the Microsoft Kinect [5]; and v) IR cameras with depth sensors [90], such as the Leap Motion [6].

However, previous research on finger-counting gestures has been limited to smaller gesture sets (10 or fewer
gestures). Moreover, gesture recognition often poses practical difficulties, as some prototypes require special
hardware or finger augmentations. Finally, gestures are typically tied to a specific application domain or form
factor, leaving the potential for appropriating these gestures for other applications largely unexplored.

This paper expands on previous work by increasing the gesture set size tenfold (from 10 to 100), only requiring
a commodity RGB camera, and studying gestures in isolation, without tying them to any specific application.

2.3 Mid-Air Gestures: A Superset of Abacus Gestures
As interactive computing continues to evolve, characterized by Virtual and Augmented Reality headsets, large
displays, smartwatches, and smart glasses, traditional input methods like physical keyboards become less practical
or even unusable. This has led to the emergence of mid-air gestures as a viable alternative. Mid-air gestures,
involving a variety of finger, hand, and body configurations and orientations, form a set that is significantly
broader than that of Abacus Gestures. Note that Abacus Gestures itself represents a superset of the more
rudimentary finger counting gestures. It is not surprising that real-time detection of generic mid-air gestures
demands robust hardware and software solutions [39, 63]. Such solutions include 3D external trackers with depth
sensors, for example, Leap Motion [6] and Microsoft Kinect [5], as well as Motion-Capture Systems like Optitrack
and Vicon [51, 52, 77, 78].

2.3.1 The Positions of Trackers and Cameras. Achieving high accuracy in mid-air gesture recognition often
requires strategic positioning of trackers to avoid occlusion and cater to specific use cases. Although trackers
are typically positioned vertically, either above or below a display, to face the user, they can also be mounted
behind the user [28]. In some scenarios, trackers are attached directly to the user’s body, such as on the head [48],
hands (e.g., gloves [44, 47, 60]), forearms [38], fingertips [19, 21, 88, 89], thigh [46], pockets [46, 67], chest [54],
shoulder [32], or even shoes [12].
However, these 3D trackers may not always be readily available and often require users to wear additional

accessories, obstructing hands-free interaction. Our goal is to carve out a subset of mid-air gestures that are
expressive yet simple enough to be detected using a single 2D commodity camera, such as a webcam, without
the need for any additional markers or accessories. The widespread availability of such commodity cameras
suggests significant potential for the implementation and use of Abacus Gestures across a variety of devices and
environments.

2.4 Challenges in Gesture Design
Designing a gesture set presents two key challenges: i) ensuring new gestures are easy to use, learn, and remember;
and ii) determining whether a set of gestures is suitable for a task. To address the first challenge, researchers
often resort to metaphorical gesture design or gesture elicitation studies.
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2.4.1 Metaphorical Gestures. Many past studies have focused on designing gestures based on familiar and natural
metaphors. Typically, these metaphors are chosen for comfort, familiarity, and ease of use, helping users to learn
and memorize the resulting gestures easily. For instance, Liu et al. [46] utilized the “Gunslinger” metaphor, where
users keep their hands down and make comfortable micro-gestures with their fingers. The gestures are detected
using a pair of thigh-mounted Leap Motion devices. Song et al. [70] used a handle-bar metaphor for 3D virtual
object manipulation, where users manipulate 3D objects using an imaginary handlebar passing through the
object. A Microsoft Kinect sensor was used to detect users’ hand movements. In this work, we utilize the Finger
Abacus as a mathematical metaphor for designing a large gesture set.

2.4.2 Gesture Elicitation Studies. A Gesture Elicitation Study [85] is a participatory design technique where end
users are individually shown the desired effect of an action or the referent. Then, they are asked to propose an
appropriate gesture for that effect, referred to as a symbol. The results from all participants are reconciled using an
agreement metric to create a single gesture [56, 85]. This technique has been applied to a wide range of emerging
interaction and sensing technologies [50, 56], such as surface computing [57, 85], mobile interaction [66], and
smart television [29, 75].

Gestures are typically elicited in a specific physical environment for determined devices, such as the steering
wheel in a car [30]. The location where gestures are issued also plays a significant role (e.g., social acceptance [62])
in the resulting gesture set. Therefore, migrating from one environment to another using the same gesture set
with different devices may be challenging [50, 74]. Gesture sets resulting from elicitation studies can also suffer
from legacy bias, where participants propose gestures based on their prior use of technologies. This bias can limit
creativity and underutilize the capabilities of the system for which the study is being conducted [56]. Moreover,
finding a common set of agreed-upon gestures can be challenging, reducing the size of the resulting gesture
set [39, 50]. Finally, most gesture sets resulting from elicitation studies are limited in size (less than 30) and are
designed for a specific application or device. We aim to go beyond this limit.

2.4.3 Evaluation of Gestures. Previous work has examined different evaluation metrics to determine whether a
set of gestures is appropriate for a task. These metrics fall into two general categories: i) cognitive dimensions,
which relate to the users’ mental model; and ii) motor dimensions, which pertain to the ergonomic characteristics
of the gestures [39]. We use these metrics to evaluate our proposed gestures.

Among the cognitive dimensions, one well-studied metric is the intuitiveness or naturalness of gestures. These
are gestures that enable users to use an application with little or no instructions [58]. Jahani et al. [37] investigated
the effect of natural and non-intrusive mid-air gestures for secondary tasks while the primary task was driving.
Bostan et al. [15] showed that intuitive gestures were easily memorable by investigating hand-specific on-skin
gestures. Researchers also explored discoverability [59, 64], learnability [22, 86], and gesture simplicity [17, 73]
when designing gesture sets [39].

In terms of the motor dimension, prior work has investigated ergonomic characteristics [39]. For instance, Ruiz
et al. [66] looked into the ease of repeating each gesture multiple times. Other well-explored ergonomic metrics
include comfort [9, 15, 62, 86], perceived fatigue [15, 22, 68], body part suitability [69], the ability to perform
concurrent gestures during intense gameplay [69], and the usage of unimanual or bimanual gestures [7].

3 OVERVIEW OF ABACUS GESTURES
The Finger Abacus technique assigns two states to each finger: open or closed. When closed, all fingers on both
hands have a value of zero. When open, the thumb is worth five, and the remaining four fingers are worth one
each on the dominant hand. On the non-dominant hand, the thumb is worth fifty when open, and the other four
fingers are worth ten each. Users can create different numbers by opening and closing various combinations of
fingers on both hands. The sum of the values of all open fingers corresponds to the represented number.
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Fig. 2. Counting different numbers with Finger Abacus. (a) The maximum count is 99 when all fingers in both hands are in
the open state. (b) The minimum count is 0 when all fingers in both hands are in the closed state. (c) Counting the number
26 requires the non-dominant Index (worth 10) and Middle (worth 10) fingers, along with the dominant Thumb (worth 5) and
Index (worth 1) fingers in the open state. All other fingers are kept in the closed state.

Fig. 3. A subset of Abacus Gestures and their corresponding finger combinations.

Figure 2a demonstrates the combined value of all fingers in the open state, which corresponds to the number
‘99’. Conversely, with all fingers in the closed state (Figure 2b), the represented number is ‘0’. Figure 2c illustrates
how to represent the number 26 with the Finger Abacus. By opening the index (worth 10) and middle (worth 10)
fingers on the non-dominant hand and the thumb (worth 5) and index (worth 1) fingers on the dominant hand,
the resulting number is 10 + 10 + 5 + 1 = 26.

In total, users can represent 100 numbers, ranging from 0 to 99, with different combinations of open and closed
fingers. Note that multiple finger combinations can represent the same number as long as the sum of the values
of the open fingers is equal to that number. For example, opening either the index or the little finger on the
dominant hand while keeping all other fingers closed also represents the number ‘1’. Similarly, another way
to represent 26 is to open the index (worth 10) and little (worth 10) fingers on the non-dominant hand and the
thumb (worth 5) and ring (worth 1) fingers on the dominant hand. Figure 3 provides a subset of Abacus Gestures
and their corresponding finger combinations.

4 ALGORITHM FOR DETECTING FINGER ABACUS GESTURES
Detecting Abacus Gestures poses several key challenges: (i) extracting reliable features or keypoints representing
each hand; (ii) ensuring rotation and orientation invariance for the keypoints; (iii) discerning how keypoints
interact in different finger states (e.g., open or closed); (iv) selecting a suitable gesture delimiter to differentiate
intended gestures from unintended ones; and (v) accommodating the variability in users’ finger dexterity.
In this section, we describe the challenges in detail and outline our algorithm’s approach to address these

challenges.
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Fig. 4. (a) The Mediapipe Hands module [91] detects 21 keypoints (k) for both the left and right hands. (b) The image depicts
the position of keypoints in the open state. The five keypoints marked by circles with red horizontal lines - 𝑘4, 𝑘7, 𝑘11, 𝑘15, and
𝑘19 - serve as reference points for the thumb, index, middle, ring, and little fingers respectively. The five keypoints marked by
circles with green vertical lines - 𝑘5, 𝑘9, 𝑘13, 𝑘17, and 𝑘21 - signify the tips of the respective fingers. The keypoint 𝑘1 positioned
at the wrist functions as the base of the hand. In this open state, the tip keypoints maintain a greater distance from the base
compared to the reference keypoints. (c) The illustration depicts the position of the same five reference points and the five
tip points in the closed state. Here, the tip keypoints are positioned closer to the base than the reference keypoints.
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Fig. 5. Transformation of the camera coordinate system to the hand-relative coordinate system. (a) A translation operation
that moves the origin to the new origin at the wrist (𝑘1). (b) An scale operation that shifts the Y-axis. (c) A rotation operation
that aligns both the X- and Y-axes passing through the points 𝑘1 and 𝑘10.

4.1 Reliable Feature Extraction and Keypoint Representation
Our initial challenge involves extracting a robust set of features and keypoints to offer an accurate representation
of each hand. For this purpose, we utilize the Mediapipe Hand Landmarks model [91], a widely available,
pre-trained computer vision library. This model can extract 21 keypoints from each hand in real-time from a
continuous 2D camera feed, with a precision of over 95%. It can detect users’ palms, as well as discern between
left and right hands.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 93. Publication date: September 2023.



Abacus Gestures: A Large Set of Math-Based Usable Finger-Counting Gestures ... • 93:9

Figure 4a depicts these 21 keypoints relative to the origin O, positioned at the top-left corner. We represent
these keypoints as vectors 𝑘1 through 𝑘21. These keypoints correspond to various anatomical landmarks such
as the wrist, fingertips, finger bases, and middle finger joints. For instance, 𝑘1 represents the wrist, while 𝑘5, 𝑘9,
𝑘13, 𝑘17, and 𝑘21 represent the tips of the thumb, index, middle, ring, and little fingers, respectively.

Each keypoint vector 𝑘𝑖 manifests as a three-dimensional point
(
𝑘𝑖𝑥 , 𝑘𝑖𝑦 , 𝑘𝑖𝑧

)
within the current camera frame,

relative to the origin O. Here, 𝑘𝑖𝑥 indicates the value along the X-axis, while 𝑘𝑖𝑦 indicates the value along the
Y-axis. Additionally, 𝑘𝑖𝑧 denotes the distance of 𝑘𝑖 from the X-Y plane.

However, as the depth information from a standard camera tends to be unreliable, our algorithm currently
dismisses 𝑘𝑖𝑧 , replacing it with 1, thereby making 𝑘𝑖 =

(
𝑘𝑖𝑥 , 𝑘𝑖𝑦 , 1

)
. This adjustment allows us to represent 𝑘𝑖

as a 2D affine vector, which is required to transform keypoint vectors into a rotation-invariant, hand-relative
coordinate system, as described in the next section.

4.2 Transforming Keypoints to a Rotation Invariant Hand-Relative Coordinate System
The next challenge is to ensure the rotation invariance of the keypoints on the X-Y plane. We accomplish this
through an affine transformation comprising a translation, scaling, and rotation of all keypoints.
First, we represent 21 keypoint vectors in a𝐾 matrix (shown below). Next, we calculate the transformation

matrices as follows. The translation matrix 𝑇 initially shifts the origin from O to the wrist keypoint vector, 𝑘1 as
shown in Figure 5a. The scale matrix 𝑆 inverts the direction of the Y-axis (Figure 5b). If the back of the hand
faces the camera, it also inverts the direction of the X-axis, as indicated by the −1 value of _. The rotation matrix
𝑅 rotates all keypoint vectors by an angle, \ = tan−1 ( 𝑘10𝑦 −𝑘1𝑦

𝑘10𝑥 −𝑘1𝑥
) − 𝜋

2 , such that the line passing through the center
of the hand aligns with the Y-axis (Figure 5c). This sequence of transformations results in a new keypoint matrix,
𝐾′ = 𝐾 · 𝑇𝑇 · 𝑆𝑇 ·𝑅𝑇 , where 𝑘′1 to 𝑘

′
21 vectors are now defined with respect to a hand-relative coordinate

system, originating at O′. Note that 𝑇𝑇 , 𝑆𝑇 , and 𝑅𝑇 denote the transpose of matrices 𝑇 , 𝑆, 𝑅, respectively.

𝐾 =



𝑘1

𝑘2

𝑘3

...

𝑘21


; 𝑇 =


1 0 −𝑘1𝑥
0 1 −𝑘1𝑦
0 0 1

 ; 𝑆 =


_ 0 0
0 −1 0
0 0 1

 ; 𝑅 =


𝑐𝑜𝑠\ 𝑠𝑖𝑛\ 0
−𝑠𝑖𝑛\ 𝑐𝑜𝑠\ 0
0 0 1


Here, _ is 1 if the palm faces the camera and −1 if the back of the hand faces the camera.

4.3 Keypoint Interaction and Finger State Recognition
To understand the interaction of keypoints under different finger states (open or closed), we scrutinize the spatial
relationship between the keypoints corresponding to each finger. This relationship is demonstrated in Figure 6a
and Figure 6c for the palm facing the camera. Figure 6b and 6d illustrate the same relationship when the back
of the hand faces the camera. For both of the camera perspectives, the distances of the keypoints from their
reference axes can be measured in the same way. We compare the distance between the tip of the finger and its
reference following the rules detailed in Table 1, further elaborated in Algorithm 2.

Regardless of the perspective of the hand, a positive distance between the tip and the reference point from the
reference axis denotes an open state, while a negative distance signifies a closed state. As these distances are
calculated in the transformed, hand-relative coordinate system that invariably rotates with the hand in the X-Y
plane, this detection system is effective across any hand rotation in the X-Y plane and any hand perspective. This
system also accurately identifies gestures under changing hand perspectives—for instance, when one palm faces
the camera while the other faces the body. It maintains invariance even under dynamic changes in perspective.
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For example, the system can successfully detect a sequence where a user presents a ‘thumbs up’ gesture for the
number 5, initially with the palm facing away from the camera and then reorienting it to face the camera.

4.4 Gesture Delimiter Selection
Our fourth challenge involves determining an appropriate gesture delimiter to distinguish between intended and
unintended gestures. We introduce a “neutral pose” as a delimiter, where all fingers must be closed both before
and after making a gesture. This neutral pose ensures that any Abacus Gesture stands out distinctly.
For example, to input the number 56 using Abacus gestures, users would first form the corresponding finger

combination, then close all fingers to delimit the gesture. Users can alter their finger combinations until they
reach the intended number, with the neutral pose acting as a delimiter.
Selecting the neutral pose as a delimiter is advantageous for three reasons. Firstly, gesturing in mid-air can

be physically taxing. By allowing users to close all their fingers and rest their hands between gestures, we help
minimize fatigue [46]. Secondly, as Finger Abacus is essentially a finger-counting method, there should be a
clear distinction between counting fingers and finalizing the count. Users should be able to count their fingers
incrementally and adjust the total until they reach the desired number. By closing all fingers and making the
neutral pose, users can finalize their count. Lastly, returning to the neutral pose resets the count to zero, allowing
users to start the next gesture naturally from zero without carrying over the previous count.

Despite these advantages, we noted that the neutral pose can occasionally lead to incorrect gesture recognition.
This can occur when the fingers of both hands do not close synchronously, causing the system to detect an

Table 1. The open condition of 10 fingers for Finger Abacus gestures, including the reference and tip keypoints, reference
axis, and the fingers’ worth in open condition. Given the mutually exclusive nature of finger states, a finger that is not open
is considered closed.

Hand Finger

Reference
Keypoint

(after trans-
formation)

Tip
Keypoint

(after trans-
formation

Reference Axis
(after

transformation
Open Condition Finger

Worth

Thumb 𝑘
′
4 𝑘

′
5 Y-axis 𝑘

′
5𝑥 − 𝑘

′
4𝑥 > 0 5

Index 𝑘
′
7 𝑘

′
9 X-axis 𝑘

′
9𝑦 − 𝑘

′
7𝑦 > 0 1

Right Middle 𝑘
′
11 𝑘

′
13 X-axis 𝑘

′
13𝑦 − 𝑘

′
11𝑦 > 0 1

Ring 𝑘
′
15 𝑘

′
17 X-axis 𝑘

′
17𝑦 − 𝑘

′
15𝑦 > 0 1

Little 𝑘
′
19 𝑘

′
21 X-axis 𝑘

′
21𝑦 − 𝑘

′
19𝑦 > 0 1

Thumb 𝑘
′
4 𝑘

′
5 Y-axis 𝑘

′
5𝑥 − 𝑘

′
4𝑥 > 0 50

Index 𝑘
′
7 𝑘

′
9 X-axis 𝑘

′
9𝑦 − 𝑘

′
7𝑦 > 0 10

Left Middle 𝑘
′
11 𝑘

′
13 X-axis 𝑘

′
13𝑦 − 𝑘

′
11𝑦 > 0 10

Ring 𝑘𝑝15 𝑘
′
17 X-axis 𝑘

′
17𝑦 − 𝑘

′
15𝑦 > 0 10

Little 𝑘
′
19 𝑘

′
21 X-axis 𝑘

′
21𝑦 − 𝑘

′
19𝑦 > 0 10

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 3, Article 93. Publication date: September 2023.



Abacus Gestures: A Large Set of Math-Based Usable Finger-Counting Gestures ... • 93:11

k'1

k'10

k'21

k'19
k'5k'4

y’

x’

k’21y – k
’
19y > 0

k’5x – k
’
4x > 0

k’19y
k’21y

k’5x
k’4x

(a)

k'1

k'10

k'21

k'19

k'5

k'4

y’

x’

k’
21y – k’

19y > 0

k’
21y

k’
19y

k’
4x

k’
5x

k’
5x – k’

4x > 0

(b)

k’1

k’4
k’5

k’10

k’19

k’21

k’
21yk’

19y

k’
21y – k’

19y < 0

k’
5x– k’

4x < 0

k’
4x

k’
5x

y’

x’

(c)

k’1

k’4
k’5 k’10

k’19

k’21

k’
21y

k’
19y

k’
21y – k’

19y < 0

k’
5x – k’

4x < 0

k’
4x

k’
5x

y’

X’

(d)

Fig. 6. Determining the state of a finger as either open or closed. (a)-(b) Illustrations show the positions of the tip and
reference keypoints when all fingers are open for both hand perspectives - palm facing the camera and palm facing the body.
Regardless of hand perspective, the distance to the tip is consistently greater than the distance to the reference for all five
fingers. (c)-(d) The figures depict the positions of the tip and reference keypoints when all fingers are closed, again for both
hand perspectives. Irrespective of the perspective of the hand, the distance to the tip is consistently less than the distance to
the reference for all five fingers.

unintended gesture just before reaching the neutral pose. To mitigate this, we introduce a stabilization threshold
– a short time interval during which a gesture must remain consistent to be considered stable. This threshold
should be small enough to allow for rapid response to intentional gesture changes but large enough to prevent
accidental changes. The appropriate threshold will depend on the frame rate of the system processing the camera
feed.
Algorithm 1 (in the Appendix) outlines the process of gesture delimitation, using the camera feed 𝐶𝐹 and a

stabilizer threshold 𝛥𝑇 as inputs. The algorithm continuously captures frames from the camera feed, and each
frame at time 𝑡 (𝑓 𝑟𝑎𝑚𝑒𝑡 ) is processed by the computer vision algorithm to generate 21 keypoints for each hand
(Figure 4a). These keypoints are then transformed to the hand-relative coordinates and passed to Algorithm 2 to
calculate the Abacus Gesture count. When the neutral pose is detected, the last stable gesture is passed to the
system. For a gesture to be considered stable, it must remain consistent for at least 𝛥𝑇 frames. To detect whether
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the 𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡 at timestamp 𝑡 is stable, we always keep track of all the gestures detected in the last𝛥𝑇 frames
in the list denoted as 𝑙𝑎𝑠𝑡_𝛥𝑡_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 . If all the gestures in 𝑙𝑎𝑠𝑡_𝛥𝑡_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 are the same as 𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡 , we
make it the stable gesture, assign it to the variable 𝑠𝑡𝑎𝑏𝑙𝑒_𝑔𝑒𝑠𝑡𝑢𝑟𝑒 , and update the 𝑙𝑎𝑠𝑡_𝛥𝑡_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 accordingly.

4.5 Adapting to Varying Finger Dexterity and Camera Positions
Finally, we designed our algorithm to accommodate variations in users’ finger dexterity and camera positions.
To do this, we incorporated per-finger thresholds that can handle minor differences in finger dexterity and
orientations.
Our algorithm includes a calibration stage, where users perform a series of predefined gestures like fully

extending all fingers, closing all fingers, and creating numbers from 1 to 8. Based on these steps, the algorithm
calculates threshold values for each finger, if necessary. By adjusting the reference keypoints according to these
thresholds, our system tailors itself to the unique movements and capabilities of each user. This calibration phase
can also adjust the stabilization threshold 𝛥𝑇 in Algorithm 1 to account for user expertise and interaction speed.

We conducted a series of lab experiments to gauge the impact of rotation along the Y-axis on gesture detection.
Our tests involved rotating the hand along the Y-axis in 15-degree increments until the detection accuracy of the
21 keypoints fell by more than 30%. We found this drop in accuracy occurred at 75 degrees when the palm faced
the camera (as illustrated in Figure 7a through Figure 7f) and at 50 degrees when the palm faced away from the
camera (as illustrated in Figure 7g through Figure 7l). This result makes sense because as the hand rotates around
the Y-axis, the fingers start to occlude each other. Particularly the thumb gets occluded by the other fingers and
is hard to detect by the algorithm. Overall, we found an accuracy of approximately 95% when the palm was away
from the camera.

5 USER STUDY: EVALUATION OF ABACUS GESTURES
We conducted a user study to evaluate the learnability, ease of use, and detection accuracy of Abacus Gestures.
More specifically, we wanted to evaluate the following hypotheses–

• H1: Participants will be quick to learn the mapping of a number to the finger combinations.
• H2: Participants will make different numbers using Abacus Gestures easily.
• H3: A single camera-based system can easily detect Abacus Gestures with high accuracy.

5.1 Participants
We recruited 20 participants, referred to as P1 through P20, in our study through university mailing lists
and personal outreach. We set our selection criteria to include individuals capable of forming diverse finger
combinations and executing basic arithmetic tasks, such as counting, addition, and subtraction. The participants’
ages ranged from 21 to 35 years (mean: 24.95, SD: 3.25), and the group comprised 15 males and 5 females. Notably,
only one participant (P12) was left-handed, with the remainder being right-handed.

5.2 Apparatus
We constructed the Abacus Gestures detection algorithm utilizing the Python API of the MediaPipe-Hands
module. We executed the study on a Dell XPS laptop equipped with Windows 10, utilizing its built-in webcam to
capture the video feed necessary for gesture detection. Our system’s interface is displayed in Figure 1b. This
interface provides users with a prompt on the first line, followed by the Abacus Gestures they’ve input on the
second line. The interface then displays the currently stable Abacus Gestures on the next line, as seen with the
‘31’ in blue font color in Figure 1b. Users maintain the flexibility to adjust their finger combinations until they
transition to gesture 0 by closing all fingers. Concurrently, the system updates the stable gesture in accordance
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(a) 0 degree (b) 15 degrees (c) 30 degrees (d) 45 degrees (e) 60 degrees (f) 75 degrees

(g) 0 degree (h) 15 degrees (i) 30 degrees (j) 45 degrees (k) 60 degrees (l) 75 degrees

Fig. 7. The effect of rotation along the X-axis. (a)-(f) Shows the 21 keypoints detected by Mediapipe when the palm faces
the camera and creates angles with the X-Y plane from 0 degrees to 75 degrees with approximately 15 degrees apart. For
smaller angles, the fingers are clearly visible to the camera. As the angle increases, the fingers start to occlude each other.
(g)-(l) Shows the 21 keypoints detected by Mediapipe when the palm is away from the camera and creates angles with the
X-Y plane from 0 degrees to 75 degrees with approximately 15 degrees apart. Again, for larger angles, the occlusion is more
prominent. However, compared to the earlier perspective, here, the thumb gets occluded more by the palm and the other
fingers. As a result, at larger angles, the thumb is barely visible. In (l), the thumb is completely missed by the model, making
it very difficult to detect the gestures.

with the users’ finger combinations. Once users see their desired gesture stabilized, they can close their fingers to
register the Abacus Gestures in the system.

5.3 Task and Design
We structured the study into three distinct phases. In the initial phase, we employed a think-aloud protocol [14].
Here, participants were asked to vocalize their thought process as they strategized how to represent a given
number with Abacus Gestures. This phase aimed to ascertain the duration it took for participants to accurately
devise the finger combination for a random number.
During the second phase, participants were required to produce various Abacus Gestures in response to

prompts displayed on the screen. We employed the Wizard of Oz protocol [25] for this part of the study. A number
was presented on the computer screen, and when participants made the corresponding Abacus Gesture, the
interviewer (acting as the wizard) pressed a button to display the next number. The purpose of this phase was to
examine how participants developed motor memory while generating various numbers using Abacus Gestures.
This phase was divided into 5 task blocks, each containing 20 gestures. Therefore, each participant generated a
total of 5 𝑡𝑎𝑠𝑘 𝑏𝑙𝑜𝑐𝑘𝑠 × 20 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 = 100 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 during this phase.
In the third phase, we employed a Repeated Measures protocol [76]. During this phase, participants were

instructed to generate a sequence of Abacus Gestures representing numerical values using our system, which
was running the gesture detection algorithm. The aim of this phase was to evaluate the accuracy and usability of
a commodity camera-based system for mid-air interaction with Abacus Gestures. This phase also consisted of
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multiple trials. In each trial, participants created a total of five sequences of Abacus Gestures, each sequence
consisting of ten gestures. Thus, participants completed 5 𝑡𝑟𝑖𝑎𝑙𝑠 × 5 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 × 10 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 = 250 𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠
during the third phase. It’s noteworthy that instead of prompting one gesture at a time, as we did in the second
phase, we prompted a sequence of gestures. This approach allowed us to better understand how participants
reacted to creating a sequence of gestures, a skill that might be required for specific tasks such as navigating
hierarchical menus or entering text.
To assess the long-term learnability and memorability of Abacus Gestures, we distributed a brief survey to

all 20 participants. This survey included questions about the value of different fingers, the maximum number
achievable with Abacus Gestures, and the finger combinations necessary to represent a provided list of numbers.
We instructed the participants to respond to these questions solely from memory, without resorting to any
external resources for assistance.

5.4 Procedure
The study took place in a quiet, well-lit room. Initially, we obtained consent and demographic details from the
participants. Next, we introduced the concept of the Finger Abacus, explained the assigned value for each finger,
and demonstrated how to represent different numbers using various finger combinations in Abacus Gestures.
Once the participants confirmed their understanding of Abacus Gestures, we initiated the first phase of the

study - the think-aloud protocol. In this phase, the interviewer provided a random number ranging from 0 to
99, and the participants were tasked with verbalizing the specific finger combination required to represent that
number using Abacus Gestures. Once participants voiced their strategy, they were given a new number. This
cycle continued until the interviewer was satisfied that the participants were able to swiftly and accurately detail
their strategies. This phase typically lasted around five minutes.
Following the initial phase, we proceeded to the second phase, in which participants were seated before the

computer and tasked with creating the Abacus Gestures corresponding to random numbers displayed on the
screen. Acting as a wizard for the gesture detection system, the interviewer would quietly press a button to
prompt the next number once the participant had correctly formed the requisite Abacus Gesture. In this phase,
participants completed five task blocks of corresponding Abacus Gestures creation, with opportunities for rest
after each block.
Subsequently, we introduced our system, which implements the Abacus Gesture detection algorithm, to the

participants. They initially practiced forming several random Abacus Gestures using the system. Once they
expressed comfort with the process, we commenced the study’s third phase. Here, participants completed five
trials of the Abacus Gestures formation task, with resting periods allowed after each trial. For each trial, the system
sequentially prompted a set of 10 random numbers, and participants were tasked with forming the corresponding
Abacus Gestures. Once a sequence of 10 was completed, the system would prompt the next sequence. Upon
the completion of all five trials, we asked participants to complete the NASA Task Load Index (NASA TLX)
questionnaire [33] to gauge their perceived task load while forming Abacus Gestures using our system.
Upon the completion of all three phases of the study, we invited participants to share their experiences with

Abacus Gestures. We solicited feedback regarding the ease or difficulty they encountered in creating specific
finger combinations. Additionally, we encouraged them to express their opinions about the accuracy of the
Abacus Gestures detection system and potential areas for improvement.

Participants completed all three phases in a single session, which typically lasted approximately an hour. For
their participation in the study, each participant received a 15 USD Amazon gift card.

Approximately four months after the in-person session, we dispatched an online survey to all participants to
assess the long-term learnability and memorability of Abacus Gestures.
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5.5 Data Collection and Analysis
We video-recorded all tasks for subsequent analysis and logged the timestamps for every gesture input during
both the second and third phases of the study. Additionally, we gathered responses from the online survey
completed by the participants.

Our analysis encompassed all video recordings, participant feedback, and survey responses, aiming to identify
patterns related to the three hypotheses. Furthermore, we processed and analyzed the log files of gesture inputs to
determine the time taken for gesture input, the accuracy of detection, and the ease of developing motor memory
for Abacus Gestures.

6 FINDINGS
In this section, we report the findings from the three phases of the user study and their implications on our initial
hypotheses.

6.1 Learnability of Abacus Gestures
First, we present our findings regarding how quickly participants could learn abacus gestures, which gestures
were easier to develop motor memory, and how well they could retain their knowledge of the gestures in the
long term.

6.1.1 Learning Time of Abacus Gestures. During the think-aloud phase of our user study, we observed that
participants rapidly acquired the ability to form different finger combinations for Abacus Gestures. This learning
process typically spanned a concise timeframe of five minutes and involved the creation of fifteen Abacus Gestures.
Initially, for the first three to four numbers, participants sequentially extended their fingers, cognizant of each
finger’s value, and offered a response once their total finger count equaled the given number. However, this
strategy evolved with the fifth number, wherein participants simultaneously extended their fingers, fine-tuning
one or two fingers towards the end—for instance, initially forming the number six with their thumb and index
finger, then incorporating the middle finger to represent seven. After creating eight to ten Abacus Gestures, we
noticed that participants could effortlessly articulate and perform the gestures. To ensure sustained ease in their
articulation process, we persisted with this exercise for a maximum of fifteen Abacus Gestures. The simplicity
and swift mastery of Abacus Gestures were acknowledged by all participants.

All participants agreed that the Abacus Gestures are very easy to learn for them. P7 expressed his enthusiasm,
stating he could “do it [Abacus Gestures] all day.” P16 highlighted the simplicity of understanding the Abacus
Gestures. P10, previously acquainted with the Abacus system, expressed substantial excitement about the
introduction of finger-based Abacus Gestures. P17 offered the following comment:

“This is very easy! If we teach children in schools how to count with fingers, they can also use these
gestures. Like, if I learned them [Abacus Gestures] in school, I would have been faster using them.”

Initially, participants encountered difficulty making Abacus Gestures for the numbers five and fifty using
their Thumbs. Many participants associated the number five with all five fingers of a hand, given the visual
correspondence. However, they quickly adapted to using the Thumb as the correct gesture for five and fifty. P1
shared the following observation:

“I am used to counting five with all five fingers. So, my hand automatically goes to this [five fingers as
five]. So, I slightly get confused. I think if I keep practicing for some time, it won’t be a problem.”

Overall, learning the finger combinations to make Abacus Gestures was very quick and easy for participants.

6.1.2 Motor Memory Development. We observed the speed at which participants developed motor memory for
the Abacus Gestures, allowing them to perform gestures without counting the value of their fingers. We have
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Table 2. A table categorizing the Abacus Gestures based on their ease of developing motor memory.

Category Motor Memory
Development Abacus Gestures

Visual Match Easy 0, 1, 2, 3, 4

Mnemonic Easy 5, 9, 50, 55, 90, 99

Unimanual Easy 6, 10, 20, 30, 40, 60
Medium 7, 8, 70, 80

Bimanual Symmetric
Easy 11, 22, 33, 44

Medium 66, 77
Hard 88

Bimanul Asymmetric
Easy

12, 13, 14, 15, 16, 19, 21, 23, 24, 25, 26, 29, 31, 32, 34, 35, 36, 39, 41,
42, 43, 45, 46, 49 51, 52, 53, 54, 56, 59, 61, 62, 63, 64, 65, 69, 91, 92,

93, 94, 95, 96
Medium 17, 27, 37, 47, 57, 67, 71, 72, 73, 74, 75, 76, 79, 97
Hard 18, 28, 38, 48, 58, 68, 78, 81, 82, 83, 84, 85, 86, 87, 89, 98

categorized the gestures into five categories and three tiers under each category, each representing varying degrees
of ease in motor memory development, as displayed in Table 2. Each category receives a detailed discussion in
the subsequent sections.

Visually Matched Gestures. We noted that Abacus Gestures, which visually corresponded to finger combinations,
were quickly and effortlessly learned and executed by participants. Five gestures fell into this category - 0, 1, 2, 3,
4. Moreover, participants developed motor memory for these gestures with notable speed after performing the
gestures a couple of times.

Gesture Mnemonic. We identified another category of Abacus Gestures that did not visually correspond to
finger combinations but were very easy for participants due to their uniqueness, which helped them develop
mnemonics. This category includes six gestures - 5, 9, 50, 55, 90, and 99. All participants found making gestures 9
and 90, which required all open fingers on either of the hands, very easy, as they did not need to think about how
many fingers to open. P13 commented that making 9 and 90 was the easiest for him since he could just open all
his fingers without worrying about raising the wrong number of fingers. Five participants (P1, P5, P6, P13, and
P18) compared 9 and 90 to the ‘stop’ gesture, as 9 represents the maximum number or the stopping point for the
dominant hand and 90 for the non-dominant hand. Similarly, 99 was very easy to learn for participants as it was
the maximum gesture, and they did not need to count their fingers’ worth to create it.
We also found that using the Thumb to make 5, 50, and 55 was unique, memorable, and easy to learn for

participants. Initially, participants opened all five fingers to represent 5 and 50 due to the visual match between
the number and the fingers. Three participants (P1, P5, and P8) initially thought that learning to represent 5 with
their thumb would be difficult, as they were accustomed to associating 5, 50, and 55 with having all five fingers
open. However, they were surprised at how quickly they developed motor memory to make 5, 50, and 55 with
their thumbs. Eight participants (P4, P6, P7, P10, P11, P16, P17, and P19) commented that they could associate 5,
50, and 55 with the ‘thumbs up’ gesture, which helped them perform these gestures quickly. These two unique
finger combinations, open Thumb and all open fingers were also reported to be very comfortable to perform by
participants.
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Unimanual Gestures. Unimanual Abacus Gestures, which required only a single hand, were also easy to learn
and make for participants. On the dominant hand, Abacus Gesture 6 fell in this category. On the non-dominant
hand, the gestures 10, 20, 30, 40, and 60 were also easy to learn and develop motor memory for participants.
Although gestures 7, 8, 70, and 80 were also unimanual, we found that these gestures required more time

for participants to master compared to the other unimanual gesture. After further investigation, we observed
that Abacus Gestures that required Thumb + additional fingers (except for 9) took more time for participants to
develop motor memory. Initially, participants made these gestures by opening the Thumb and then adding one
finger at a time. They were able to quickly develop motor memory for gestures 6 and 60. However, making 7, 70,
and 8, 80 took more time than 6, 60, which is why we consider 6 and 60 in the easy tier and the rest in the medium
tier. In addition, in the initial few attempts to make 7, 70, and 8, 80, we observed participants actively looking at
the fingers and counting the worth to make sure they were making the correct finger combinations. However,
after the initial attempts, participants could develop motor memory and perform these gestures without counting
the fingers.

Overall, we found that most unimanual gestures were easier to learn and develop motor memory than bimanual
gestures for participants. P5 provided insight into these why these numbers were easier:

“When I am making numbers with a single hand, I only need to focus on just one hand, and the gestures
come naturally. However, when both of my hands are involved, this attention gets divided, and I need to
make sure I am combining the correct fingers from both hands.”

Bimanual Symmetric Gestures. For bimanual Abacus Gestures, symmetric gestures or the gestures that required
the same finger combination from both hands were mostly easy to learn for participants. Particularly, learning
the four symmetric Abacus Gestures - 11, 22, 33, and 44 was very easy and fast in this category. None of these
Abacus Gestures involve the Thumb, and the number at the unit place is a direct visual match to the fingers of
the dominant hand. In addition, the non-dominant hand has the exact same finger combinations as the dominant
hand, making these gestures faster for motor memory development.

Two other symmetric Abacus Gestures, 66 and 77, were medium tier in this category as participants needed to
combine both their hands; each hand involved the Thumb + additional fingers. Finally, we found the symmetric
gesture 88 to be hard to learn as participants required opening Thumb + three additional fingers in both hands,
which required them to actively count their fingers on both hands.

Bimanual Asymmetric Gestures. The rest of the Abacus Gestures fall under this category. We observed that
gestures that required 7 and 70 had medium learnability, whereas gestures involving 8 and 80 required more time
to learn and develop motor memory. This was unsurprising as we found unimanual 7, 70, and 8, 80 also took
more time for participants to learn compared to the other unimanual gestures. Therefore, involving another hand
with these Abacus Gestures took even more time for participants to make and learn. We particularly found that
asymmetric gestures involving 8 and 80 were the hardest for participants to learn. Interestingly, 6 participants
(P2, P3, P5, P13, P5, and P18) mentioned that to distinguish between 7 and 8, they had to consciously think about
which fingers they were raising. Consequently, 78 and 87 were the two numbers that took the most time and
effort for these participants to learn, as they had to focus on both hands and actively count the fingers’ worth
almost every time it appeared.

The rest of the bimanual asymmetric gestures were found easy to learn for participants as they could develop
motor memories for them after some time. All of these gestures involve 1 - 6, 9 on the dominant hand and 10 - 60,
90 on the non-dominant hand. Again, these gestures were also in the easy tier in their corresponding unimanual
categories.

6.1.3 Long-Term Memorability of Abacus Gestures. 10 out of 20 participants took part in the survey. The approxi-
mate interval between the in-person study and the online survey was 120 days on average. From the survey data,
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Fig. 8. (a) Average time to make an Abacus Gesture over the five task blocks in Phase 2 (without the Computer Vision
module). (b) Average time to make an Abacus Gesture over the five trials in Phase 3 (with the Computer Vision module).
Note that the required time per gesture plateaued near the end in both phases, indicating participants’ performance was
almost saturated during the study.

we found that all 10 participants answered all the questions correctly. In addition, we discovered that participants
also retained their preferred finger combinations (e.g., using the Middle + Ring + Little combination on the
dominant hand to make 3) from their earlier study to make the gestures. These findings indicate that Abacus
Gestures are memorable over a long period of time.

The above findings support H1 that learning the finger combinations for Abacus Gestures was very quick for
participants.

6.2 Ease of Execution of Abacus Gestures
Next, we report the performance of the participants in making Abacus Gestures and the comfort of making these
gestures using the finger combinations.

6.2.1 Average Gesture Making Time Without Computer Vision Module. Figure 8a shows the average time to
make an Abacus Gesture over the five task blocks calculated from phase 2 of the user study. In this phase,
there was no underlying computer vision (CV) module for gesture detection. When the CV module was absent,
participants required 2.42 seconds (SD: 0.17) per Abacus Gesture on the first task block. In the fifth task block,
this per gesture-making time was reduced to 1.84 seconds (SD: 0.13), which was 31.52% less than the first block.
A Repeated Measure ANOVA found a significant main effect of the task blocks on the required time per gesture
(𝐹 (4, 16) = 173.632, 𝑝 < .001) without the CV module, which indicated that participants’ performance of Abacus
Gestures improved significantly over the five task blocks.
Note that the average gesture-making time plateaued near the fifth block, indicating that participants could

learn to make the Abacus Gestures within a short amount of practice and reach very close to their maximum
performance.

6.2.2 Average Gesture Making Time With Computer Vision Module. Figure 8b indicates the average time to make
an Abacus Gesture over the five trials calculated from phase 3, where our underlying computer vision (CV)
module detected the gestures. With the CV module, participants required 3.45 seconds (SD: 0.54) per Abacus
Gesture on the first trial. In the fifth trial, this per gesture-making time was reduced to 2.38 seconds (SD: 0.27),
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Fig. 9. The average NASA TLX scores for making Abacus Gestures.

which was 31.01% less than the first trial. A Repeated Measure ANOVA found a significant main effect of the
trials on the required time per gesture (𝐹 (4, 16) = 44.206, 𝑝 < .001) with the CV module, which indicated that
participants’ performance of Abacus Gestures improved significantly over the five trials.

Similar to phase 2, the average gesture-making time plateaued near the fifth block, indicating that participants
could learn to make the Abacus Gestures within a short amount of practice. We observed that in both the second
and the third phase, the average Abacus Gestures had similar trends over time. However, with the CV module,
the overall gesture-making time was higher compared to the other phase. We found that, without the CV module,
participants made the gestures more casually (e.g., not closing the fingers accurately to make a fist). On the other
hand, with the CV module, they needed to make these gestures accurately in front of the camera. Otherwise, the
Abacus Gestures were not detected accurately by the system, which took more time. In addition to making the
gestures accurately, participants also looked at the feedback from the system with the CV module and verified
that they were making the correct Abacus Gestures. Such feedback was not present in the second phase.

6.2.3 Perceived Task Load. Figure 9 represents the NASA TLX scores to make Abacus Gestures for all participants.
The result indicates that participants required more physical demand than mental demand (50 vs. 33.57) for
making Abacus Gestures, which is unsurprising because making mid-air gestures is physically demanding. In
addition, less mental demand indicates that participants were able to learn the technique and use the gestures
without much cognitive effort. The overall task load for the making Abacus Gestures was 38.18 on average
after making 250 gestures (SD: 19.89), indicating the gestures were usable with a moderate task load for mid-air
interaction.

6.2.4 Effect of Finger Dexterity on Gesture Execution. From the study data and participants’ feedback, we observed
that finger dexterity played amajor role inmaking different Abacus Gestures. Consequently, someAbacus Gestures
were easier to make with fingers than others. Table 3 provides categorizes the Abacus Gestures based on how
easy or difficult the Abacus Gestures were to execute. According to the participants, the five most comfortable
finger combinations were Index (1, 10), Index + Middle (2, 20), Thumb (5, 50), Thumb + Index (6, 60), and all five
fingers (9, 90). All participants, except for P2, also felt comfortable making 4/40 with the combination of Index
+ Middle + Ring + Little fingers. Only P2 reported that his thumb naturally opened slightly when opening the
other four fingers - Index + Middle + Ring + Little. Therefore, when he tried to make Abacus Gestures 4, 40, it
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Table 3. A table categorizing the Abacus Gestures depending on their ease of execution.

Execution Abacus
Gestures Most Frequent Combinations (N) Alternative Combinations (N)

Easy

0 All Fingers Closed (20) N/A
1, 10 Index (19) Little (1)
2, 20 Index + Middle (19) Ring + Little (1)
4, 40 Index + Middle + Ring + Little (20) N/A
5, 50 Thumb (20) N/A
6, 60 Thumb + Index (19) Thumb + Little (1)
9, 90 All Fingers Open (20) N/A

Medium 3, 30 Index + Middle + Ring (16) Middle + Ring + Little (4)
7, 70 Thumb + Index + Middle (18) Thumb + Index + Little (2)

Hard 8, 80 Thumb + Middle + Ring + Little (10) Thumb + Index + Middle + Ring (9),
Thumb + Index + Middle + Little (1)

was occasionally detected as 9, 90 by our system at first. However, P2 commented that it was not an issue for him
after some time, as he got accustomed to making the combination without opening the Thumb.
5 out of 20 participants (P3, P5, P12, P13, and P5) reported that making 7, 70 with Thumb + Index + Middle

was easy initially, but they felt slightly uncomfortable after making this combination for a long time. Among
them, 2 participants modified the combination and made the gestures 7, 70 using the combination Thumb + Index
+ Little, which was similar to a ‘rock’ or ‘horn’ gesture and easy to perform. The flexibility to make a gesture
with multiple finger combinations allowed participants to adapt and find a comfortable finger combination; all
participants appreciated this. A similar adaptation we observed for making the gestures 3, 30 by 4 participants
(P2, P9, P12, and P18). They relied on the Middle + Ring + Little finger combination instead of the Index + Middle
+ Ring combination used by the other 16 participants.

Participants had the most difficulty making Abacus Gestures 8, 80 with the combination of Thumb + Index +
Middle + Ring. While making 8 using this combination, either the Ring finger was too low (detected as 7, 70) or the
Little finger was open with the Ring finger (detected as 9, 90). 11 out of 20 participants found this sequential finger
combination difficult to make. As a workaround, participants chose different finger combinations for gestures 8,
80. The most preferred finger combination was Thumb + Middle + Ring + Little, used by 11 participants, instead
of the sequential combination (used by 9 participants). Only a single participants, P14, used the Thumb + Index +
Middle + Little combination to make the gestures 8, 80.

To better understand our results, we resorted to two metrics related to the anatomy of human hands - individ-
uation index and finger enslaving. Although the human hand possesses high dexterity, not all fingers can move
independently. The degree to which a finger can move individually is the individuation index of the finger. The
Thumb and the Index finger have high individuation indices, whereas the Ring finger has the lowest individuation
index [41, 72]. The second metric is finger enslaving, which refers to the unintentional movement of a finger
due to the movement of another finger. Again, we found that both the Thumb and the Index finger have minor
enslaving effects, whereas the Middle and the Little finger highly enslave the Ring finger, limiting its independent
movement. Due to the high individuation and low enslaving effect of the Thumb and the Index finger, Abacus
Gestures involving only these two fingers were very easy to make for participants (e.g., gestures 1, 10, 5, 50, and
6, 60). On the contrary, making the gestures 8, 80 with the Thumb + Index + Middle + Ring combination was
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difficult as the closed Little finger limits the opening of the Ring Finger [41, 72]. For the same reason, the Thumb
+ Middle + Ring + Little combination was easier for the gestures 8, 80, which was preferred by most participants.

The above findings support H2.

6.3 Usability of Abacus Gestures Detection System
Finally, we report the accuracy and usability of our single commodity camera-based gesture detection algorithm.

6.3.1 Gesture Detection Accuracy. We found that the hand tracking and detection accuracy of Abacus Gestures
with our implemented system was over 98% using just a 2D commodity camera, and the users’ hands were
completely free without any marker or accessories. The reason for this higher accuracy is that the Abacus
Gestures require only 2D coordinates from the keypoints. In addition, the users faced their palms toward the
camera during the study, which made hand detection and tracking very robust and improved gesture detection
accuracy. Compared to our setup, MediaPipe reported their accuracy on real-world hand images with different
lighting conditions and occlusions due to the orientation of the hands in different directions. In our lab study, we
found over 95% accuracy of detection when the palm was facing the body (discussed in Section 4.5).

Investigating further into the scenarios where our system could not detect the correct gestures, we identified
three issues. The first issue was environmental, where the background interfered with the participants’ hands. 3
out of 20 participants (P6, P12, and P19) mentioned that they had to adjust their hand occasionally for the system
to recognize the gestures. For example, P12 initially faced problems with the system as her dress had bright and
colorful patterns causing the system to inaccurately detect some gestures. Later, she adjusted her hand positions
so that the hands did not overlap with the dress, which significantly improved the detection accuracy.
Secondly, the system detected some gestures incorrectly when users’ fingers were not properly opened or

closed. For example, in the neutral position, some participants’ were not making a fist, and their Thumbs were
slightly opened, causing the system to incorrectly detect 5 and 50. In addition, during the beginning of the
sequence in Phase 3 of the study, some participants moved their hands (e.g., randomly touching their face), and
the system detected a random gesture. Moreover, while making 8, 80, the gestures were sometimes detected as 7,
70, or 9, 90 due to partially open fingers, as discussed in Section 6.2.4. As we progressed with the study, we found
that participants adapted their behavior, and the incorrect detection declined.
Finally, we found that when participants became faster in making these Abacus Gestures, sometimes the

system failed to recognize the gesture. The reason for this was the stabilization threshold 𝛥𝑇 , introduced in
Section 4.4. Particularly, participants were faster in opening and closing their Thumb for 5, 50 and their Index
finger for 1, 10. Due to fast opening and closing, the gestures were not stable and were not recognized by the
system. As a result, participants required a second slower attempt to input these gestures in some cases.

6.3.2 Feedback Regarding User Experience. All participants found Abacus Gestures to be interesting and fun to
use for mid-air interaction. They appreciated the design and the accuracy of the system for the detection of finger
counting and utilizing the counts as input gestures. Participants encouraged the system feedback that showed
the current gesture and got updated when the finger combination changed. P15 found the feedback very helpful
for making Abacus Gestures without errors. P13 commented that:

“How the system supports counting is very helpful. It does not take a number until I close all my fingers.
So I can literally count with my fingers when I need to make a bigger number. Like when I am making
68, my mind usually goes to the closest number, like 70. So I can count 70 with my left hand. Then I can
take down 1 finger from the left hand to go to 60 and count 8 with my right hand. This is very helpful
for me as it supports how I am thinking in my mind.”
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P5 also found that as the system does not enter a number until closing all fingers, it took the pressure off of her
to make the exact count with both hands and allowed time and flexibility to adjust the finger combinations for
making large numbers. She commented:

“Although I need to focus on both hands when making numbers like 87, I can take my time and divide
the attention. For example, I can focus on my left hand first to make an 80, and the system also shows 80.
Then it waits until I focus on my right hand to make a 7. Again, I can see the updated count 87 from
the system, which assures my finger combination is correct. Finally, I can close my fingers to enter the
number. So, the system makes it easier for me to enter the gestures correctly.”

Participants also expressed that the system was very accurate in detecting gestures from finger combinations.
For example, P15 commented that he had difficulty making 8 with his right hand. He could barely open the Ring
finger without raising the Little finger. However, he was surprised to see that Abacus Gesture could detect the
gestures correctly almost every time. Overall, the counting process, detection accuracy, and gesture delimiting
technique were well-received by all participants for mid-air gesture-based interaction.
The findings above support our third hypothesis.

7 DISCUSSION AND FUTURE WORK
In this section, we discuss the implications of our findings, provide guidelines regarding the use of Abacus
Gestures, and explore potential use cases.

7.1 Design Implications
Given that our proposed gesture set encompasses a total of 100 gestures, one could conceivably map these gestures
to corresponding interface operations or elements, such as menu items, in an arbitrary manner. However, this
arbitrary allocation of gestures could inadvertently amplify the cognitive burden on the users. To counteract this
potential issue, we advocate for assigning these gestures according to a systematic arrangement that users can
readily mentally map or categorize. By adhering to this methodology, Hick’s Law in interface design [35] suggests
that the cognitive load on users will only increase logarithmically, even as the number of choices proliferates,
provided the underlying arrangement possesses some orders.

We additionally recommend the following strategies to map our gestures to corresponding interface operations
or elements.

7.1.1 Assigning Gestures by their Learnability and Ease of Execution. When assigning Abacus Gestures for a
particular application, gestures that are easy to learn and comfortable to execute should be assigned first. In
Table 2 and 3, we categorized all Abacus Gestures based on their learnability and comfort of execution. For
example, the five Abacus Gestures in the Visual Match category in Table 2 were very easy for users to learn from
the beginning. As a result, these Abacus Gestures should be assigned to the most frequent interactions. Using the
same principle, Abacus Gestures that take more time for participants to learn and perform can be assigned to
infrequent interactions.

7.1.2 Mapping Gestures to Mataphors. When designing for a specific application, gestures can be assigned based
on metaphors so that users can easily interact with the system. For example, for a media player system, stopping
a media can be assigned to gesture 9 (all fingers open on the dominant hand), which represents a ‘stop’ sign.
Similarly, gesture 5 or ‘thumbs up’ can be used to add media as a favorite item. A similar metaphor-based gesture
assignment has been found useful in prior work as well [34].

7.1.3 Assigning Gesture by Mnemonic. Gestures assigned by some form of mnemonic can also be easy to learn for
users. For example, users always remember eventful numbers such as the date of birth of them or their children.
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Fig. 10. Three potential use-cases for Abacus Gestures. (a) A delivery person at the door is typing a short message using the
doorbell camera. (b) An extended mouse grid. A computer window is divided into nine grids; each contains additional nine
sub-grids inside. The mouse cursor can be moved to a smaller sub-grid with Abacus Gestures. (c) An interactive counting
game for children to teach arithmetic concepts in a fun and engaging way. Children can count using Finger Abacus and
input the gestures to play the game.

Therefore, frequent interactions can be assigned to such numbers to facilitate users’ memorability and learnability.
In this case, an interface that lets users customize Abacus Gestures can be a good choice.

7.1.4 Designing Math-based Shortcut. After assigning gestures for a particular application, remaining unassigned
Abacus Gestures can be used to design math-based shortcuts combining multiple operations under a single
Abacus Gesture. One strategy is to assign the sum of the subtasks of a multi-step task as the shortcut. For example,
if 20 files are assigned to Abacus Gestures 1 to 20, and the deletion operation is assigned to gesture 50, then the
sum of 50 and the file number can be directly used to delete that file (Abacus Gestures 50 + 9 = 59 to delete the
file 9). A similar strategy is also used in Grade 2 Braille [82], where the unassigned braille patterns represent
frequently occurring prefixes/suffixes (e.g., -ing). However, we acknowledge that such addition-based shortcuts
can collide with other Abacus Gestures and may require some form of disambiguation.

7.2 Potential Use Cases of Finger Abacus Gestures
Here, we envision four potential use cases for interaction with Abacus Gestures in mid-air.

7.2.1 SupportingMultimodal Interaction with Abacus Gestures. Abacus Gestures can complement other modalities,
such as speech, to improve the quality of interaction. One such example can be text correction using the
combination of speech and abacus gestures. Correcting errors in touch- and speech-based interfaces can be
cumbersome and often require users to manually move the cursor to a specific location and then correct the
errors. To make the process quicker and easier, prior work [92] combined gaze and speech, where users first look
at the incorrect word to select it and then utter the new word to correct it. A similar goal can be accomplished
using a combination of speech and Abacus Gestures, considering each word in a sentence tagged using numbers
from 1 to n. For example, if the third word of the sentence is incorrect, users can raise the Abacus Gesture 3 to
select the word and utter the new word to correct it. This strategy can be particularly helpful for non-visual users
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who cannot use their eye gaze. They can use Abacus Gestures to query words, identify the incorrect word, and
then utter the correct word.

7.2.2 Mid-Air Typing with a Commodity Camera. Abacus Gestures can be mapped to a keyboard layout to enter
short texts and digits in IoT devices with a camera for touchless interaction. For example, users can leave short
messages with doorbell cameras or enter one-time passcodes (OTPs) in kiosks with Abacus Gestures. Figure 10a
shows a delivery person at the door leaving a short message and the contact number for the unavailable recipient
using Abacus Gestures with a doorbell camera. The camera feed can be processed by a microcontroller (e.g.,
Raspberry Pi) to convert the gestures to letters and save the message for the recipient. To facilitate typing, the
layout can be printed and placed near the camera. Later, the recipient can use the contact number to reach out to
the delivery person to receive a package.

7.2.3 Touch-less and Keyboard-less Computer Interaction. Abacus Gestures can be used to interact with computers
when users cannot access a physical mouse or a keyboard. One example of touchless interaction is MouseGrid,
which divides the computer interface into 9 cells (1 - 9) using a 3 × 3 grid. Users can move their mouse pointer to
a specific cell by speaking the cell number. We can extend the MouseGrid by dividing each of the 9 cells into 9
sub-cells using another 3 × 3 inner grid, effectively dividing the screen into 81 cells. To move the mouse to a
specific grid cell, users can select the first-level grid with their dominant-hand count and then select a sub-cell
using their non-dominant-hand count. Unlike prior work ([11, 18]) that leveraged traditional 10-finger counting
for limited menu navigation, Abacus Gestures can also support navigation containing a total of 100 menu items.

7.2.4 Interactive Games for Children to Learn Arithmetic Operations. Prior work in the neuro-cognitive develop-
ment of children reported that children who possess good finger-based numerical representation skills could
acquire better arithmetic skills [55]. Therefore, learning finger math early is beneficial for later numerical devel-
opment [8, 24]. To support learning finger-based arithmetic operations, we can utilize Finger Abacus gestures to
design interactive games for children. to familiarize them with number sense and basic arithmetic operations.
Figure 10c illustrates such a use-case, where a child is playing a hypothetical game on a computer. The game
prompts the child to count the number of oranges shown on the screen. As the child makes the count, the
interface will show the count on the screen. When the child reaches the appropriate count, the interface will
provide feedback to the child about the correct count and move to the next task. With progress, other arithmetic
tasks (e.g., addition and subtraction) can be included for the child.

7.3 Limitation and Future Work
In our study, we focused on evaluating the usability, ease of performance, and detection accuracy of our proposed
large set of Abacus Gestures. Our goal was to use a familiar metaphor, finger-counting in this case, to propose a
large number of gestures. In addition, we discussed the implication of the findings, proposed gesture assignment
policy, and discussed potential use cases. However, a limitation of this work is that we did not evaluate the
performance of our proposed gesture set for any specific task and evaluate the performance of the gesture set to
accomplish the task. In our future work, we aim to evaluate the assignment of Abacus Gestures for specific tasks
and determine the memorability, usability, and performance of the gesture set. In addition, we aim to evaluate
whether our gesture assignment policy in a non-math context is useful or not and compare our gesture set with
available representative gesture sets.
We also aimed to uniformly cover all gestures from 0 to 99 in our prompts during the study. However, not

all participants performed each gesture with equal frequency, and the gestures were not associated with any
task that necessitated the assignment of all 100 gestures. As a result, the usability of our gestures might differ
depending on the nature of real-world tasks. Moving forward, we plan to employ our gestures in scenarios where
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the complete set of 100 gestures is required, ensuring equal user performance for a thorough assessment of
learnability, execution, and usability.

8 CONCLUSION
In this work, we propose Abacus Gestures, a large set of usable finger-counting gestures for mid-air interaction.
Abacus Gestures are designed using Finger Abacus counting as a metaphor to support a total of 100 gestures.
We detected these gestures with a 2D commodity camera and an off-the-shelf computer vision algorithm. We
conducted a user study with 20 participants to understand the learnability, memorability, and ease of use of our
proposed gestures. We found that Abacus gestures were very easy to learn for participants just after five minutes
of practice. In addition, these gestures were memorable over a long period of time and were comfortable for users
to perform. The gesture could also be detected using just a single commodity camera with over 98% and 95%
accuracy when the palm is facing the camera and the body, respectively. Based on the findings and observations,
We categorized the gestures in terms of their motor memory development time and ease of performance. We also
provided design guidelines regarding the use of this large math-based gesture set in various mid-air applications.
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A APPENDIX

Algorithm 1: Interacting with Abacus Gestures
input :

𝐶𝐹 : camera feed
𝛥𝑇 : stabilizer threshold

1 begin
2 𝑠𝑡𝑎𝑏𝑙𝑒_𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ← 𝑒𝑚𝑝𝑡𝑦

3 𝑙𝑎𝑠𝑡_𝛥𝑡_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠 ← 𝑒𝑚𝑝𝑡𝑦

4 while 𝐶𝐹 is active do
5 𝑡 ← current timestamp
6 𝑓 𝑟𝑎𝑚𝑒𝑡 ← 𝐺𝑒𝑡𝐹𝑟𝑎𝑚𝑒𝐴𝑡𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 (𝐶𝐹, 𝑡)
7 𝐾𝐷 ← 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 (𝑓 𝑟𝑎𝑚𝑒𝑡 , Dominant)
8 𝐾𝐷′ ← 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝐻𝑎𝑛𝑑𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 (𝐾𝐷)
9 𝐾𝑁𝐷 ← 𝐺𝑒𝑡𝐻𝑎𝑛𝑑𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 (𝑓 𝑟𝑎𝑚𝑒𝑡 , Non-dominant)

10 𝐾𝑁𝐷′ ← 𝑇𝑟𝑎𝑛𝑠 𝑓 𝑜𝑟𝑚𝐻𝑎𝑛𝑑𝐾𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠 (𝐾𝑁𝐷)
11 𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡 ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐴𝑏𝑎𝑐𝑢𝑠𝐺𝑒𝑠𝑡𝑢𝑟𝑒 (𝐾𝐷′ , 𝐾𝑁𝐷′ )
12 if 𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡 = 0 then
13 𝑑𝑒𝑙𝑖𝑚𝑖𝑡𝐺𝑒𝑠𝑡𝑢𝑟𝑒 (𝑠𝑡𝑎𝑏𝑙𝑒_𝑔𝑒𝑠𝑡𝑢𝑟𝑒)
14 𝑠𝑡𝑎𝑏𝑙𝑒_𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ← 𝑒𝑚𝑝𝑡𝑦

15 else
16 if 𝐺𝑒𝑠𝑡𝑢𝑟𝑒𝐼𝑠𝑆𝑡𝑎𝑏𝑙𝑒 (𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡 , 𝑙𝑎𝑠𝑡_𝛥𝑡_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑠, 𝛥𝑇 ) then
17 𝑠𝑡𝑎𝑏𝑙𝑒_𝑔𝑒𝑠𝑡𝑢𝑟𝑒 ← 𝑎𝑏𝑎𝑐𝑢𝑠_𝑔𝑒𝑠𝑡𝑢𝑟𝑒𝑡
18 end
19 end
20 end
21 end
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Algorithm 2: Calculating Abacus Gesture
input :

𝐾𝐷′ : a matrix of 21 transformed keypoint vectors on the dominant hand
𝐾𝑁𝐷′ : a matrix of 21 transformed keypoint vectors on the non-dominant hand

output :
𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 : total finger abacus count from the keypoints

1 begin
2 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 0

3 if points from the dominant hand then
4 if thumb is open then /* see Table 1 for the conditions */
5 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 5
6 end
7 if index is open then
8 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
9 end

10 if middle is open then
11 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
12 end
13 if ring is open then
14 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
15 end
16 if little is open then
17 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 1
18 end
19 end

20 if points from the non-dominant hand then
21 if thumb is open then
22 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 50
23 end
24 if index is open then
25 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 10
26 end
27 if middle is open then
28 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 10
29 end
30 if ring is open then
31 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 10
32 end
33 if little is open then
34 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 ← 𝑓 𝑖𝑛𝑔𝑒𝑟_𝑎𝑏𝑎𝑐𝑢𝑠_𝑐𝑜𝑢𝑛𝑡 + 10
35 end
36 end
37 end
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