
Grid-Coding: An Accessible, Eficient, and Structured Coding
Paradigm for Blind and Low-Vision Programmers

Md Ehtesham-Ul-Haque Syed Mostofa Monsur Syed Masum Billah
Pennsylvania State University Bangladesh University of Engineering Pennsylvania State University

University Park, Pennsylvania, USA and Technology University Park, Pennsylvania, USA
mfe5232@psu.edu Dhaka, Bangladesh sbillah@psu.edu

0419052034@grad.cse.buet.ac.bd

Figure 1: Code reading and writing in a traditional code editor vs. Grid-Coding. (Left) shows a piece of Python code (9 lines) in a popular IDE,
Visual Studio Code (VS Code). Note that VS Code highlights keywords and function names with colors and represents indentations with spaces.
Unfortunately, these visual cues do not beneft blind programmers. (Right) shows an accessible representation of the same piece of code in Grid
Editor, our implementation of Grid-Coding. Each grid component (e.g., rows, columns, and cells) has consistent semantics. For example, a row
represents a single line; a column represents a scope (or an indentation level), except for the leftmost column, which represents line numbers;
and a cell can represent either a statement, an indentation, or a padding. Note that indentation cells convey semantically meaningful info
(e.g., within if instead of space, space, . . . , space), which helps blind programmers to stay situated at any cell. In addition, blind programmers
can easily navigate the grid structure using arrow keys, edit a cell by pressing ENTER if allowed (e.g., at row 6, the rightmost column), and go
back to navigating the grid in read-only mode by pressing ESC. Bright cell colors provide visual aids to sighted and low-vision programmers.

ABSTRACT
Sighted programmers often rely on visual cues (e.g., syntax coloring,
keyword highlighting, code formatting) to perform common cod-
ing activities in text-based languages (e.g., Python). Unfortunately,
blind and low-vision (BLV) programmers hardly beneft from these
visual cues because they interact with computers via assistive tech-
nologies (e.g., screen readers), which fail to communicate visual
semantics meaningfully. Prior work on making text-based program-
ming languages and environments accessible mostly focused on
code navigation and, to some extent, code debugging, but not much
toward code editing, which is an essential coding activity.

We present Grid-Coding to fll this gap. Grid-Coding renders
source code in a structured 2D grid, where each row, column, and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
UIST ’22, October 29-November 2, 2022, Bend, OR, USA
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9320-1/22/10. . . $15.00
https://doi.org/10.1145/3526113.3545620

cell have consistent, meaningful semantics. Its design is grounded
on prior work and refned by 28 BLV programmers through online
participatory sessions for 2 months. We implemented the Grid-
Coding prototype as a spreadsheet-like web application for Python
and evaluated it with a study with 12 BLV programmers. This study
revealed that, compared to a text editor (i.e., the go-to editor for
BLV programmers), our prototype enabled BLV programmers to
navigate source code quickly, fnd the context of a statement easily,
detect syntax errors in existing code efectively, and write new
code with fewer syntax errors. The study also revealed how BLV
programmers adopted Grid-Coding and demonstrated novel inter-
action patterns conducive to increased programming productivity.

CCS CONCEPTS
• Human-centered computing → Accessibility systems and
tools.

KEYWORDS
Accessibility, assistive technology, screen readers; programming
languages, text-based programming languages, Python, code read-
ing, code writing; grid-coding; blind and low-vision, programmers.

https://doi.org/10.1145/3526113.3545620
mailto:permissions@acm.org
mailto:0419052034@grad.cse.buet.ac.bd
mailto:sbillah@psu.edu
mailto:mfe5232@psu.edu

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

ACM Reference Format:
Md Ehtesham-Ul-Haque, Syed Mostofa Monsur, and Syed Masum Billah.
2022. Grid-Coding: An Accessible, Efcient, and Structured Coding Par-
adigm for Blind and Low-Vision Programmers. In The 35th Annual ACM
Symposium on User Interface Software and Technology (UIST ’22), October
29-November 2, 2022, Bend, OR, USA. ACM, New York, NY, USA, 21 pages.
https://doi.org/10.1145/3526113.3545620

1 INTRODUCTION
Many aspects of text-based programming are visual. For example,
sighted programmers can visually inspect the matching parentheses
or the alignment of spaces in a code snippet. For additional support,
they often resort to an integrated programming environment (IDE),
such as Visual Studio Code, IntelliJ, and Eclipse, which contain ad-
vanced code editors that ofer numerous visual and syntactical cues
(e.g., keyword highlighting and syntax coloring, bracket-matching,
and realtime error indication with squiggly lines). Unfortunately,
these visual cues are not readily available to blind and low-vision
(BLV) programmers who must use assistive technologies like screen
readers (e.g., NVDA [3]). This is because a screen reader can only
narrate textual descriptions of content given by an app or an IDE,
and for most visual cues, IDEs do not provide meaningful descrip-
tions [15, 38, 49, 52, 62]. Thus, most BLV programmers do not
beneft from modern IDEs; instead, they are forced to use plain
text editors (e.g., Notepad, TextEdit, Notepad++) [15, 45], which af-
fects their coding activities, such as code navigation, comprehension,
skimming, debugging, and editing [15, 34, 38, 45, 49, 62].

Out of all challenges, code navigation challenges are extensively
studied. Other challenges, particularly code comprehension and
skimming, and to some extent, debugging [35], are considered as
a consequence of code navigation challenges [49]. Put diferently,
code navigation and associated challenges stem from the inherent
difculty in reading the code, whereas challenges in code editing
involve writing, which are more consequential. BLV programmers,
for instance, often write code at an incorrect or an unintended
location [23, 38, 44, 45], inadvertently introducing syntax errors
and causing frustrations thereof [17]. Although consequential, prior
work hardly addresses the code editing challenges for them.

In this paper, we introduce Grid-Coding paradigm, a fresh
perspective on non-visual programming that addresses the code
navigation, editing, and associated challenges with text-based pro-
gramming languages for BLV programmers. To demonstrate the
novelty in Grid-Coding, we briefy elaborate on the challenges BLV
programmers face in code navigation and editing. Both challenges
stem from the grammar of a programming language, limited support
from plain text editors, and screen readers reading code sequentially,
line by line, sometimes character by character [14–16, 45].

First, BLV programmers listen to the entire source code repeat-
edly to create a mental map of the code hierarchy, which can burden
their short-term memory [21, 55]. Second, they frequently move
around their screen reader cursor in a lengthy codebase, often los-
ing track of the last known location of their cursor and struggling
to comprehend the overall code structure [14, 15, 45]. Third, in
programming languages like Python, they need to mentally count
and listen to whitespace characters (e.g., NEWLINE, SPACE, TAB) to
determine the current scope or level in the code [35]. For example,
in Figure 1, line 5 on the left side of the code will be read out as

‘‘Space space space . . . (8 times), sum equals sum plus i’’.
This process is slow, tedious, and error-prone [15, 45, 52]. Fourth,
because of the uncertainty in determining the scope and the current
cursor focus, they are prone to editing code at an incorrect location.

Grid-Coding overcomes the above challenges as follows. It fat-
tens the implicit hierarchy in the code into a 2D grid and renders
the grid in a spreadsheet-like structure with a fnite number of rows
and columns (shown on the right side of Figure 1). Each row in
the grid represents a single line in the original code snippet, and
each column represents an indentation level, except for the frst
column, which represents line numbers. Each cell contains either
a statement, an indentation, or padding. Indentation cells carry
semantically meaningful information about an indentation (e.g.,
within for if the current statement is within a for loop, instead
of reading out as ‘‘Space space space . . . "). Padding cells are
non-editable and always appear on the right of a statement cell
to preserve the uniform grid structure, i.e., ensure the number of
columns equals the highest level in any rows. A programmer can
navigate the grid using common spreadsheet shortcuts, such as di-
rectional Arrows to move to a neighboring cell and Ctrl + Arrows to
jump over Padding cells or Indentation cells in a row or column.

This 2D, spreadsheet-like structure eliminates the challenges
of navigating hierarchies—one can easily navigate grid cells with
arrow keys and remain positioned in the grid by listening to the
row and column numbers. The maximum number of rows and
columns inform programmers of source codes’ inherent complexity
(e.g., lines of code, the maximum number of nested scopes), which
can help them create a mental map easily [42, 66]. Furthermore,
Indentation cells provide the context of each statement at all times,
thus eliminating the confusion about indentation and scopes, as
well as the need to memorize the scope or level of a statement. This
can also lessen the burden on programmers’ short-term memory
and increase their confdence in locating the screen reader cursor
in a larger codebase. Moreover, since the grid layout is well-defned
(e.g., m × n), it ensures uniformity of interaction experience, a
cornerstone for efective non-visual interaction [25].

Grid-Coding utilizes spearcons and earcons to communicate
important contextual information, such as reaching the boundary
in the grid, reporting syntax errors, and distinguishing Indentation
cells from Padding cells [36]. It also uses bright cell colors to
provide a visual aid to low-vision programmers. In all, the dynamic
grid structure, a small set of simple shortcuts, consistent semantics,
and meaningful auditory cues of Grid-Coding address the frst three
challenges involving coding reading.

To address the fourth challenge involving risk-free code writing,
Grid-Coding makes all grid cells read-only by default. One can press
Enter to edit a Statement cell and Esc to go back to navigating
the grid in read-only mode. While editing, Grid-Coding disables
breaking a statement into multiple lines, which is consistent with
BLV programmers’ current practice of reading code line by line
or character by character. Furthermore, Grid-Coding only allows
editing an Indentation cell if doing so does not cause a syntax
error. For example, the within for Indentation cell in row 6 in
Figure 1.right is editable but the within for cell in row 5 is not.
By incorporating these built-in safety mechanisms, Grid-Coding
avoids introducing common syntax errors that BLV programmers

https://doi.org/10.1145/3526113.3545620

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

often make with a plain text editor, where editing is unconstrained,
i.e., one can edit at any location.

We implemented Grid-Coding paradigm by developing an online
code editor, namely, Grid Editor, from scratch (§3). Grid Editor
leverages Abstract Syntax Tree (AST) of a code, similar to prior
work [21, 54]. However, unlike prior work, it augments the AST
to create Abstract Syntax Table (ASTab). This ASTab (§4.3) main-
tains the proposed grid structure and allows programmers to edit a
Statement cell or create a new one (i.e., mutate the AST).

Leveraging AST has notable benefts: it allows Grid-Coding to
generalize for any programming language because open-source
packages to generate AST for most languages are available [7].
We demonstrated Grid-Coding for Python because it is the most
popular language to date [9] and is used to develop a popular screen
reader, NVDA [50], plus its plug-ins [47], thus has of signifcant
importance to BLV community. We demonstrated how Grid-Coding
can be implemented for another language (e.g., Java) in Section 8.

We adopted an online participatory design with 28 BLV program-
mers for 2 months to refne Grid-Coding (§3.1). During development,
we followed the ten implementation guidelines by Philip Guo [33]
to scale and sustain our prototype1 in the longer run. A user study
with 12 BLV programmers reveals that, compared to a plain text
editor (i.e., the go-to editor for most BLV programmers), Grid Edi-
tor enables participants to quickly navigate source code, fnd the
context hierarchy of a statement, understand the structure, and
detect and fx syntax errors. In addition, they can comfortably edit
source code in the grid cells, zeroing in on indentation errors and
minimizing the number of non-indentation errors in the code. The
study also revealed how BLV programmers adopted Grid-Coding
and demonstrated novel interaction patterns conducive to increased
programming productivity.

In sum, our contribution is three-fold:
• Proposing Grid-Coding: a new paradigm for non-visual pro-
gramming on grid structure instead of text editors.

• Implementing Grid Editor, a web-based, spreadsheet-like
editor to read and write Python code that augments AST.

• Evaluating Grid Editor with 12 BLV programmers and report-
ing unique usage patterns emerged in this new paradigm.

2 BACKGROUND AND RELATED WORK
The common accessibility issues for BLV programmers can be cate-
gorized as assistive technology-related issues, programming environments-
related issues, and programming language-related issues. We briefy
describe these issues and current workarounds and how these issues
informed the design of Grid-Coding. We also describe Grid-Coding’
relationships with block coding, tabular data representation, and
AST, as well as the use of auditory cues in non-visual programming.

2.1 Assistive Technology-Related Issues
Assistive technologies, such as screen readers, narrate the contents
of the screen via audio. A screen reader (e.g., NVDA [3], JAWS [1],
and VoiceOver [19]) compensates for the inability of users to see
a graphical user interface, and implements keyboard shortcuts for

1https://ally-ide.herokuapp.com/

users as an alternative to using a mouse to point-and-click graphi-
cal elements. Due to the transient nature of auditory perception,
BLV programmers usually listen to code line-by-line, from the
start-to-the end, multiple times. These make it hard to navigate a
large codebase and comprehend the context of a line (e.g., current
scope) [15, 21, 45, 52]. Screen readers also read out source code
in a way that is hard to understand because some keywords and
symbols in the source code may not be dictionary words.

Workarounds. Instead of going line-by-line, BLV programmers
often use the search feature to look up information. For efective
searching, they put private comments and keywords in the code.
However, before sending this code to others, they must remove all
of these comments, which is inconvenient [15, 45].

Another workaround is to force the screen readers to read out the
gist of a statement. For example, Stefk et al. [59, 62] recommended
describing source code as naturally as possible (e.g., “m = 5;” can
be read out as “m equals 5" or “m to 5”). Baker et al. [21] presented
the name, followed by the input, return type, and modifers or
annotations to read out functions; and the name, followed by what
it extends and implements, followed by the modifers for class
declarations. Schanzer et al. [54] also included a descriptive label
of the function with input arguments. Potluri et al. [52] provided a
list view of available functions, similar to virtual link lists ofered
by screen readers on web pages [37]. They additionally provided a
code summary view containing the variables and functions inside a
class along with their line numbers. We experimented with diferent
textual representations of code statements during our participatory
design phase (§3.1).

2.2 Programming Environments-Related
Issues

Programming Environments or IDEs, such as Visual Studio Code,
NetBeans, and IntelliJ, pack myriad features (e.g., auto-completion,
auto-indentation, code-folding, error alerts, and visual debugging)
and visual cues (e.g., syntax coloring, keyword highlighting, paren-
thesis matching, auto-indentation, and red squiggles). Sighted pro-
grammers conveniently use these features and visual cues to navi-
gate, comprehend, skim, debug, and edit code. Unfortunately, most
BLV programmers are unaware of these features or rarely use com-
plex IDE features [45, 52]. Worse, many of these features are not
exposed to screen readers [15, 45, 52]. For example, auto-completion
dialog, code-folding, and debugging panels are not fully accessible
to screen readers [15, 38, 49, 52, 55, 62] Similarly, screen readers
do not read out red squiggles in Visual Studio that alert sighted
users about a syntax error. This issue can easily be addressed by
playing an error tone in the presence of a syntax error [52], which
we incorporated into our design.

Workarounds. Common workarounds include (a) using plain
text editors (e.g., Notepad, Notepad++) with basic features [15, 45]
that are more accessible with screen readers and (b) searching for
external plug-ins that can make an IDE more accessible [47]. For
example, Notepad++ supports plug-ins that read out the number
of indentation characters to assist BLV programmers during code
editing. Sometimes, BLV programmers use plain text editors as a
secondary bufer to record errors, bugs, and variable locations for

https://1https://ally-ide.herokuapp.com

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

easier navigation and bookmarking [15]. This strategy also allows
them to look up information without losing their location in the
code and enables out-of-context editing [14, 15, 45]. It inspires us to
design multiple coordinated views: a Text Editor and a Grid Editor
side-by-side, where one can seamlessly transition between them.

2.3 Programming Language-Related Issues
Text-based programming languages are governed by grammars,
which include a set of textual rules to describe all possible strings
(e.g., variables, statements, scopes, conditions, loops, delimiters)
in a specifc programming language [13, pp. 42–52]. To adhere to
the underlying grammar, programmers often need visual percep-
tion. For example, programming languages like C, Lisp, and Java,
require matching parenthesis to create a scope, whereas some new
languages, like Python, Ruby, or Quorum [60], require SPACE or
TAB, as shown on the left side of Figure 1. In both cases, sighted
programmers can visually inspect the matching parentheses or the
alignment of spaces. For additional support, they often resort to an
integrated programming environment (IDE).

Some programming languages have complicated syntax (e.g.,
Java) [61], and some rely on visual cues (e.g., space for indentation
in Python). These languages pose a learning challenge for BLV pro-
grammers. Further, in most programming languages, source code
can contain implicit hierarchies (e.g., global scope, nested scopes)
and recursion. These can make it challenging for BLV programmers
to navigate code, as they can easily lose track of which level they
were at [15, 52]. Besides navigation, Albusays et al. [15] reported
that blind developers constantly struggle to contextualize the code.
Other exploratory studies [40, 45] reported similar fndings.

Workarounds. Researchers have proposed specialized, BLV-friendly
programming languages and tools. For example, Sanchez et al. [63]
developed an Audio Programming Language (APL). However, their
language supports only a limited set of functionalities, hence not
scalable. Similarly, Stefk et al. [58, 62] developed a programming
language, Quorum [60], for BLV students, and an audio-based pro-
gramming environment, Sodbeans [58]. Sodbeans provides a soni-
fed omniscient debugger (SOD) that integrates audio cues to help
BLV users debug their code. In our design, we parse the compiler
error output (e.g., error line number, error description) and present
it in a consistent format that allows the programmers to fnd the
relevant error information and jump to the originating line.

A second workaround is explicitly constructing the code hier-
archy using the AST and presenting it to BLV programmers as a
tree [14, 21]. For example, Smith et.al. [55] developed an Eclipse
plugin to navigate hierarchical structures of the fles in a codebase.
Drawing on this work, Baker et al. [21] presented StructJumper, an
Eclipse plugin, to create a hierarchical tree of the code inside a Java
class. Schanzer et al. [54] promoted hierarchical code navigation
in a browser-based environment that leverages AST to support
multi-language. However, this workaround is for navigating code
where the tree remains read-only. Our goal in this paper is to make
reading and writing of mainstream programming languages easier
for BLV programmers.

2.4 Relationship with Block-Based Coding
Block-based programming languages (e.g., Scratch [10], Blockly [8],
and Snap! [11]) provide a set of predefned visual blocks that one
can connect by dragging and dropping to create code. Block lan-
guages use the puzzle-piece metaphor to indicate the compatibility
of blocks and ensure that the generated code is always syntactically
correct [65]. Thus, block languages are suitable for children because
they do not have to worry about syntax errors while creating code
with blocks [22].

However, the reliance on colors and shapes of visual blocks
and the drag-and-drop interaction make block-based programming
inaccessible for BLV individuals [46, 65]. Nonetheless, we were
inspired by the error-prevention mechanism in block programming
and supported auto-completion of block-like code templates (e.g.,
loops and if-else conditions) to lower the likelihood of common
syntax errors.

2.5 Audio Cues for Accessible Programming
Auditory cues are an important construct in non-visual program-
ming. Stefk et al. [59] suggested that audio cues should be short;
browsable, i.e., one can extract key info while skimming; and deliver
important information frst [62]. Other work [21, 54] also found
these principles useful. Among diferent types of audio cues, speech-
based, spearcons, earcons, and audio icons are commonly used.
Researchers have found that spearcons and earcons are efective
in hierarchical menu navigations [27, 64]; and speech-based cues
and earcons are efective in understanding compiler errors, invalid
statements, cursor location, background process, value changes
of debug variables, and fow of program execution while debug-
ging [15, 57, 59]. Albusays et al. reported that BLV programmers
think of auditory feedback as a core component of programming
interaction [15]. Memorizing multiple audio cues can be a prob-
lem. In this regard, Schanzer et al. [54] suggested playing earcons
and speech-based cues together so that users can associate earcons
with speech over time but are never forced to remember them. To
increase the information content in auditory output, researchers
have suggested playing a secondary audio channel distinct from the
screen reader speech at the same time [52, 53]. Drawing on these
large bodies of work, we chose to use speech-based (e.g., current
row number), familiar (e.g., error beep for syntax error representa-
tion), and semantically meaningful (e.g., a typewriter sound while
editing code) audio cues in our implementation.

2.6 Tabular Representation of Source Code
There is growing evidence that BLV users fnd tabular structure
(i.e., spreadsheets, grids) more useful than raw data (e.g., text fles,
web pages); they can make sense of the information and seek data
faster in tables because the tabular format is organized, navigable
by directional arrow keys, and the interaction is deterministic and
reversible [18, 20, 28, 32, 39, 41, 42, 48, 51, 56, 66, 67]. Further, prior
research [24–26] has shown that BLV users prefer a small set of
shortcuts (e.g., arrow keys), and uniformity in interaction experi-
ence. A grid or tabular structure thus can fulfll these requirements
and is the key to our design.

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

2.7 Uniform Abstract Syntax Tree (AST)
An AST represents the syntax of a source code in a hierarchical
(i.e., tree) structure, as defned by the grammar of a programming
language. Generating an AST from a source code indicates whether
the code is syntactically correct or not. Schanzer et al. [54] suggested
that IDEs should support multiple languages rather than be tied to
one. They recommended constructing a language agnostic, uniform
AST to represent any source code. This is particularly appealing
because converting a language-specifc AST to a uniform AST is
doable. Our system works with the AST of Python code; it frst
converts the tree representation of AST into a 2D tabular structure
and represents it in the grid.

3 DESIGN AND OVERVIEW OF GRID-CODING
First, we present an initial prototype of Grid-Coding that was used
as a probe in our participatory design. We then provide an overview
of our fnal design and highlight how the participatory design
refned our fnal prototype. A list of supported shortcuts and audio

Figure 2: Navigating in Grid Editor. Black and Red Left arrows il-
lustrate using LEFT Arrow to go to the adjacent cell on the left of
a cell (e.g., from ‘if flag:’ to ‘within if’). Blue arrows depict
the navigation of all the statements within a level and skipping the
Indentation cells with Ctrl + DOWN Arrow (e.g., from ‘for j in
range (2, i):’ to ‘if flag:’).

cues are presented in Table 1 and Table 2.

3.1 Participatory Design
Initial prototype. We chose to develop our programming envi-

ronment as a web-based system because (a) web-based platforms
are getting popular due to the increasing availability of Chrome-
books [54]; (b) users can use it without additional setup [33]; and
(c) we can distribute its URL to online forums for early evaluations.

We analyzed relevant prior work on accessibility issues in main-
stream, text-based programming languages and IDEs. As described
in Section 2, we chose to represent the AST of Python in a grid-
based structure [42, 66]. Following the ARIA guidelines [6], the
frst row of this grid contained column headers (e.g., line number,
level 1, level 2), and the frst column contained line numbers. The
subsequent rows represented a line, and the columns represented a
level (or scope) of Python code. The number of columns increased
as the programmers added nested levels. We made the structure
dynamic with Padding cells to provide a uniform interaction ex-
perience [25]. To support easier context understanding [15, 45], we
replaced whitespaces with Indentation cells containing contex-
tual cues (e.g., within if). The prototype supported writing block
Statement cells with accessible auto-completion. Users could use
Tab and Shift + Tab to change indentation levels. The prototype

Shortcut Description

→/←/↑/↓
Go to the adjacent cell in the direction of the
arrow key if available; otherwise, play boundary
notifcation

Ctrl + →/←/↑/↓

Jump to the Statement cell or the cell at the
edge of the row/column in the direction of the
arrow key skipping Indentation cell and
Padding cell if available; otherwise, play
boundary notifcation

Enter
Make the current cell editable from Navigation
Mode (if allowed) or create a new row if the cell
is already in Edit Mode

Esc
Make the current Statement cell read-only
from Edit Mode and go to Navigation Mode

Alt + Enter Execute the source code and go to Code Output
Crtl + G Go to a line in Grid Editor

Crtl + L
Announce the line number, level, and scope of
the current Statement cell

Table 1: List of shortcuts for Grid Editor.
provided error beeps as soon as a syntax error occurs (similar to
red squiggles), as suggested by [52, 59]. Another periodic error cue
was available announcing the error line at a fxed interval to keep
users informed about errors in the code [15, 59]. The prototype
also provided meaningful earcons during each interaction with
the system using a secondary audio channel [52] over the screen
readers’ audio [53]. It contained a plain text editor on the left and a
grid editor on the right. Both editors were highly coordinated, i.e.,
the text cursor in one view was mapped with the corresponding
location in the other.

Initial prototype as a probe. After IRB approval, we reached
out to two online groups for BLV users (nvda@nvda.groups.io and
program-l@freelists.org), inviting them to evaluate our initial pro-
totype. Within a week, we shared the URL of this prototype with 28

Notifcation Meaning of auditory cue

Boundary
A cell is in the top/bottom/left/right boundary
and trying to go beyond

Error A beep alert if cell contains a syntax error
Compiling The code is being compiled

Enter Edit Mode
Pressed Enter on a Statement cell in
Navigation Mode

Exit Edit Mode Pressed Esc in Edit Mode
Editing A typewriter sound in Edit Mode
Cell Navigation Traversing the grid with arrow keys
Block Auto-
Completion

Using suggestions for auto-completion of block
statements

Table 2: List of auditory cues for Grid Editor.

mailto:program-l@freelists.org
mailto:nvda@nvda.groups.io

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

BLV programmers who responded to our invitations. These partici-
pants used our prototype in their daily coding activities (e.g., doing
homework, copying and pasting 3rd-party code to check the overall
structure, and for fun). From time to time, they provided feedback,
reported bugs, and requested new features via emails. Upon receiv-
ing feedback, a bug report, or a feature request, two authors of this
paper discussed how to resolve the issue gracefully and quickly
deployed a solution. This cycle continued for 2 months until the
prototype became stable and received encouraging feedback from
the participants. Below, we describe how various functionalities
of Grid-Coding evolved from its initial version to the prototype
presented in this paper (shown in Figure 3).

3.2 Code Presentation
Grid Editor represents a source code in a 2D grid or tabular format,
which localizes the programming area by dividing it into cells (see
Figure 3.Right). Each row in the grid represents a line of code, and
each column represents a level or scope. The structure is dynamic
and does not contain any redundant rows or columns.

The frst column of the grid contains the line numbers. The
subsequent columns are part of the code. For example, The second
column contains the frst level of code, the third column contains
the second level, and so on. Our initial design had a header row.
However, we had to remove it because most participants reported
that it creates a mismatch between the current row number and
line number in the code. For example, screen readers consider the
header row as row 1. So, if the current line number is 5, the screen
reader would say row 6 (line number + 1). It was confusing, and
participants suggested removing the header row.

Grid Editor has three types of cells: Statement cell, Indentation
cell, and Padding cell. Statement cells are editable that contain
the code that users write in each row. Indentation cells replace
whitespaces and convey semantically meaningful information (e.g.,
within if) about block statements. Finally, Padding cells maintain
a uniform grid structure. Each row in the grid can contain only a
single Statement cell and multiple Indentation cells and Padding
cells. Indentation cells always appear before the Statement cell
in a row, and Padding cells always follow the Statement cell.

3.2.1 Modes of Operation. Grid Editor operates in two modes:
Navigation Mode and Edit Mode. Navigation Mode is the non-editable
state of the grid for risk-free navigation of source code. In Edit
Mode, users can write source code in the Statement cells of the
grid. Users can go from Navigation Mode to Edit Mode by pressing
Enter on a valid cell and go back to the Navigation Mode with Esc.
Participants recommended including familiar and distinctive audio
cues to communicate states. Therefore, Grid Editor conveys a low-
to-high note when entering from Navigation Mode to Edit Mode,
a typewriter sound during Edit Mode; a high-to-low note when
exiting Edit Mode.

3.3 Code Navigation
3.3.1 Navigating Source Code. Grid Editor provides risk-free navi-
gation of source code in Navigation Mode, protecting against acci-
dental modifcation. Users can use the Arrow keys to go from one
cell to another adjacent cell in the grid (see Black and Red arrows in

Figure 2), including line numbers. Grid Editor provides audio feed-
back during each Arrow key press, including a boundary indicator
sound when trying to go out from a cell at the grid boundary.

In addition to cell-by-cell navigation, users can jump over the
Padding cells and Indentation cells with Ctrl + UP/DOWN Arrow
to navigate the code block-by-block (see broken Blue arrows in
Figure 2). Similarly, Ctrl + LEFT/RIGHT Arrow allows users to skip
Padding cells or Indentation cells in a row. The feedback from
the participatory sessions informed the design of these shortcuts
to skip cells. Users can invoke the Go To option with Ctrl + G
shortcut, type the row number, and press Enter to quickly jump to
a particular row.

3.3.2 Finding Contexts. In Grid Editor, users can get information
about the line, level, and scope of the code (e.g., at line 8, level
2, within if scope) with the Ctrl + L shortcut. To understand the
complete nesting structure of a statement, users can check all the
Indentation cells in that row and listen to contextual information
such as within if and within for (see Figure 4). This informs the
users about all the block statements written at each level without
leaving the row and searching for other nested statements. Later,
some participants pointed out that including the actual conditions
in the Indentation cells (e.g., within if a > 0) can help understand
the context hierarchy of a deeply nested statement. Therefore, we
included the option to enable conditions but disabled it by default
as some participants found it too verbose, particularly in a small
source code.

3.4 Code Editing
3.4.1 Writing Statements. Users can edit in Grid Editor by fnding
a Statement cell in Navigation Mode and pressing Enter to go to
Edit Mode. To remind users that they are in Edit Mode, Grid Editor
periodically provides a typewriter sound cue. Without this cue in
the initial design, participants reported being unsure of the mode
of operation. Each editable cell contains a placeholder depending
on the position in that grid to provide contextual cues. For example,
a Statement cell at level 1 announces ‘enter a statement’ whereas
a Statement cell inside a for block announces ‘enter for body’.

In Edit Mode, users can type a statement such as a = 5 inside
a Statement cell and press Enter to create a new row just below
the current row. The new row will contain a Statement cell at the
same level unless users create a block statement (e.g., conditions,
loops). In that case, an Indentation cell will be created frst, and
the Statement cell will be at the next level (block statements are
described in §3.4.3). Users will stay in Edit Mode until they press
Esc to go to Navigation Mode.

3.4.2 Suggestions for Variables and Blocks. Grid Editor provides a
list of suggestions in realtime based on the user input using an acces-
sible drop-down menu. Users can traverse the menu with UP/DOWN
Arrow and auto-complete variables (e.g., value, sumOfNumbers) and
block statements (e.g., if block, try block) by pressing Enter. The
suggestions for auto-completion are dynamically generated to en-
sure the creation of valid block statements in the code (e.g., an else
block is not suggested without an immediate if block).

3.4.3 Writing Block Statements. Grid Editor supports the comple-
tion of all block statements in Python. Consider writing an if block

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

file:///C:/Users/mfe5232/Documents/sonification_editor/home.html 1/2

Text Editor (Ctrl+1)
data = [1, 6, 31, 17, 20]
for i in data:
 if i > 1:
 flag = False
 for j in range(2, i):
 if (i % j) == 0:
 flag = True
 break
 if flag:
 print(i, " is not a prime number")
 else:
 print(i, " is a prime number")

Code Output (Ctrl+5)
6 is not a prime number
31 is a prime number
17 is a prime number
20 is not a prime number

Grid Editor (Ctrl+2)

1 data = [1, 6, 31, 17,

2
for
i in data
:

3 within for

if
i > 1
:

4 within for within if flag = False

5 within for within if

for
j in range(2, i)
:

6 within for within if within for

if
(i % j) == 0
:

7 within for within if within for within if flag = True

8 within for within if within for within if break

9 within for within if

if
flag
:

10 within for within if within if print(i, " is not a pr

11 within for within if else:

12 within for within if within else print(i, " is a prime

Figure 3: A screenshot of our fnal prototype. (Upper Left) a general-purpose Text Editor shows the textual representation of a code. (Right)
Grid Editor showing the grid representation of the code. (Lower Left) Code Output shows the output of the code. Note that Text Editor and
Grid Editor are coordinated.

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 data = [1, 6, 31, 17, 20]

2
for
i in data :

3 within within for i in datafor i in data print("current number", i)

4 within within for i in datafor i in data
if
i > 1 :

5 within within for i in datafor i in data within within if i > 1if i > 1 flag = False

6 within within for i in datafor i in data within within if i > 1if i > 1
for
j in range(2, i) :

7 within within for i in datafor i in data within within if i > 1if i > 1 within within for j in range(2,for j in range(2,
i)i) print(j)

8 within within for i in datafor i in data within within if i > 1if i > 1 within within for j in range(2,for j in range(2,
i)i)

if
(i % j) == 0 :

9 within within for i in datafor i in data within within if i > 1if i > 1 within within for j in range(2,for j in range(2,
i)i) within within if (i % j) == 0if (i % j) == 0 flag = True

10 within within for i in datafor i in data within within if i > 1if i > 1 within within for j in range(2,for j in range(2,
i)i) within within if (i % j) == 0if (i % j) == 0 break

11 within within for i in datafor i in data within within if i > 1if i > 1
if
flag :

12 within within for i in datafor i in data within within if i > 1if i > 1 within within if flagif flag print(i, " is a prime number")

13 within within for i in datafor i in data within within if i > 1if i > 1 else:

14 within within for i in datafor i in data within within if i > 1if i > 1 within within elseelse
print(i, " is not a prime number")

Figure 4: Finding the context hierarchy of a statement in the grid. A user can start from the Statement cell and check all the Indentation
cell with LEFT Arrow (shown in Black arrows). Note that Indentation cells show the actual condition (which is disabled by default).

at level 1 with auto-completion. Users type ‘i’ or ‘if’ and select the
if block option from the drop-down menu (see Figure 5). Grid Edi-
tor will put a non-editable if keyword, the required colon (:), and
an editable placeholder in-between to write the condition. A new
row is created just below the current row containing the within
if Indentation cell at level 1 and a Statement cell at level 2 for
writing the body. Users write the condition in the placeholder, press
Enter to go to the Statement cell at level 2 in the next row, and
fnally, write the body of if block.

Our initial design only supported writing blocks using auto-
completion to reduce syntax errors. However, participants strongly
suggested that Grid Editor should allow editing as naturally as pos-
sible. Later, we made the auto-completion of the block statements
optional. Therefore, users can also write an if block manually by
typing ‘if’, the condition, followed by a colon(:), and pressing Enter.

The grid automatically adds the Indentation cell and takes users
directly to the block’s body at the next level in the next row (see
Figure 6).

3.4.4 Going Out of Indentation. To go out of a block, users press
Esc to go to the Navigation Mode, use LEFT Arrow to determine
the Indentation cell of the block statement users want to end,
and press Enter to convert the Indentation cell to a Statement
cell (see Figure 7). Mandatory Indentation cells (e.g., the frst
Indentation cell of a block) are prevented from conversion to
avoid indentation errors in the code. We initially used Tab and
Shift + Tab to modify indentation levels. However, participants
strongly recommended using shortcuts consistent with popular
spreadsheet software (e.g., Microsoft Excel). Their feedback also

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

Figure 5: Writing an if block with auto-completion feature. (a) Typing ‘i’ at row 2 provides a list of suggestions for auto-completion including
the option, if block. (b) Selecting the if block from the list and pressing Enter creates a skeleton for if block. The input box at row 2 for
writing the condition of the if block is focused. (c) Writing the condition of the if block at row 2. (d) After pressing Enter, the focus is
switched to the Statement cell for writing the body at row 3. The Indentation cell is modifed to contain the condition. (e) Writing inside
the body of the if block at row 3.

If manual
Text EditorText Editor
(Ctrl+1)(Ctrl+1)

a = 10
if a > 0:

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0:

4/3/22, 5:22 PMAlly IDE

Page 1 of 2http://ally-ide.herokuapp.com/

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0:

3 within within if a > 0if a > 0 enter if body

4/3/22, 5:24 PMAlly IDE

Page 1 of 2http://ally-ide.herokuapp.com/

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:
 print("positive")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0:

3 within within if a > 0if a > 0 print("positive")

(a) (b) (c)

Figure 6: Writing an if block manually. (a) Writing the condition of the if block at row 2. (b) After pressing Enter, the focus is switched to
the Statement cell for writing the body at row 3. The Indentation cell is modifed to contain the condition. (c) Writing inside the body of
the if block at row 3. Text EditorText Editor

(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:
 for i in range(a):
 print(i)

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0
:

3 within within ifif for i in range(a)
:

4 within within ifif within within forfor print(i)

5 enter a statement

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:
 for i in range(a):
 print(i)

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0
:

3 within within ifif for i in range(a)
:

4 within within ifif within within forfor print(i)

5 within within ifif within within forfor enter for body

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:
 for i in range(a):
 print(i)

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0
:

3 within within ifif for i in range(a)
:

4 within within ifif within within forfor print(i)

5 within within ifif within within forfor enter for body

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
if a > 0:
 for i in range(a):
 print(i)

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 if a > 0
:

3 within within ifif for i in range(a)
:

4 within within ifif within within forfor print(i)

5 within within ifif within within forfor enter for body

(a) (b)

(c) (d)

Figure 7: Going out of a block. (a) Creating a new row inside the block. (b) Pressing Esc to go to Navigation Mode. (c) Finding the Indentation
cell where the new level will start. (d) Pressing Enter to replace the Indentation cell with a Statement cell.

suggests that exploring Indentation cells before going out of a as a syntax error was detected. However, participants found too
block helped them avoid writing code at unintentional levels. many beeps before completing a statement annoying and counter-

productive. Instead, they suggested providing cues when users
try to leave a Statement cell containing an error (e.g., going to

3.5 Error Detection in Grid Editor Navigation Mode or creating a new row). Users also hear the same
3.5.1 Error Cues in Grid Editor. Grid Editor plays a beep sound as
an error cue to quickly detect syntax errors in the code. Analogous
to the squiggly error lines of IDEs, our initial design beeped as soon

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
b = 12
if a > b:
 print(a greater than b")
else:
 print("a less than b")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)
SyntaxError: invalid syntax. At line 4.
print(a greater than b")

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 b = 12

3 if a > b :

4 within within if a > bif a > b print(a greater than b")

5 else:

6 within within elseelse print("a less than b")

1

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
b = 12
if a > b:
 print(a greater than b")
else:
 print("a less than b")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)
SyntaxError: invalid syntax. At line 4.
print(a greater than b")

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 b = 12

3 if a > b :

4 within within if a > bif a > b print(a greater than b")

5 else:

6 within within elseelse print("a less than b")

1

Text EditorText Editor
(Ctrl+1)(Ctrl+1)
a = 10
b = 12
if a > b:
 print(a greater than b")
else:
 print("a less than b")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)
SyntaxError: invalid syntax. At line 4.
print(a greater than b")

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2 b = 12

3 if a > b :

4 within within if a > bif a > b print(a greater than b")

5 else:

6 within within elseelse print("a less than b")

1

(a) (b) (c)

Figure 8: Detecting an error in Grid Editor. (a) Executing the code from row 1 and level 1 by pressing Alt + Enter. (b) Keyboard cursor is at
Code Output, which can be traversed with Arrow keys. (c) Going back to Grid Editor automatically focuses the error Statement cell at row 4,
level 2.

4/6/22, 11:27 PM Editor 2

https://editor-text.herokuapp.com 1/3

Text Editor
(Ctrl+1)
File "script.py", line 4
 print(a greater than b")
 ^
SyntaxError: invalid syntax

4/7/22, 12:10 AM Editor 2

https://editor-text.herokuapp.com 1/3

Text Editor
(Ctrl+1)
SyntaxError: invalid syntax. At line 4.
print(a greater than b")

(a) (b)

Figure 9: (a) Original error output from a Python interpreter. Output
contains redundant information such as a visual indicator at line 3.
(b) Modifed error output in Grid Editor. Only useful information
are provided to users in a consistent format, such as the error mes-

sage, the line number of error, and the error content.

error beep sound in Navigation Mode while traversing a row con-
taining an error Statement cell. In addition, Grid Editor also peri-
odically announces the location of syntax errors (e.g., error at line
5). Initially, we kept the interval of the periodic cue fxed. However,
to keep the verbosity at a preferred level, participants suggested
providing options to toggle error cues and set interval periods on
demand.

3.5.2 Code Execution and Modified Error Message. Users can ex-
ecute the code anytime from Grid Editor using Alt + Enter, and
read the output from the Code Output window (see Lower Left of
Figure 3). In case of an error, we modifed the output to present
useful error information to the users. Figure 9a shows the actual
error output from a Python interpreter, which contains a visual in-
dicator at line 3 indicating the position of the error to sighted users
and separating the error message (line 4) from the error content
(line 2). Most participants informed that they were confused by the
line with the indicator as their screen readers did not announce
anything, and they thought the error output ended there. Therefore,
we rearranged the syntax error output into 2 lines - the error type,
message, and line number in the frst line, followed by the error
statement in the second line (see Figure 9b).

3.5.3 Qickly Jumping to the Error Statement from Code Output.
When users go back to Grid Editor from the Output Window with
a syntax error, the grid automatically takes them to the error cell,
allowing them to fx the error quickly without navigating the entire
code. Figure 8 illustrates this feature.

4 GRID EDITOR: AN INSTANTIATION OF
GRID-CODING PARADIGM

In this section, we describe the technology and the implementation
strategies of Grid-Coding.

4.1 Implementation Guidelines
We followed the ten guidelines by Philip Guo [33] to make our
research prototype scalable and sustainable. Table 3 summarizes
the guidelines and how we instantiated each guideline during the
development of Grid Editor.

In summary, our prototype is developed with old web technology
(e.g., plain HTML and JavaScript) and does not need any installation
or login to write and execute code. We do not host any user data on
our website. Our prototype is static, stateless, and easy to deploy at
any server. Only two developers (authors of this paper) developed
the prototype and managed the system (e.g., deploying it on the
server). We aim to keep our development team small and integrate
only user experience-related feedback to make future developments
and maintenance easier.

4.2 Technical Components
To demonstrate Grid-Coding, we implemented a web-based proto-
type, namely Grid Editor. Figure 3 provides a snapshot of this pro-
totype and its components. In our implementation, we followed the
best practices suggested by WAI-ARIA [6] to ensure our prototype
is fully accessible with screen readers. The fnal prototype contains
three views: Grid Editor, an implementation of our Grid-Coding
paradigm; Text Editor, the go-to editor for BLV programmers; and
Code Output, the output window.

We utilized several open-source libraries to develop our system.
For example, to parse Python code and generate an Abstract Syn-
tax Tree (AST), we used an incremental parser called Lezer [5],
that can generate an AST even though the code has a syntax er-
ror. This feature is particularly useful for implementing our editor
because programmers are likely to make syntax errors (uninten-
tional) during code editing, and the parser ensures that a partial
AST is generated. To compile the code, we used an external API
from judge0 [4], an online code execution system. Our editor dy-
namically parses Python code while users are editing, generates
a list (or table) representation from the AST called ASTab, uses the

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

Design Guidelines Examples from Grid Editor

User Experience

Walk-up-and-Use No installation or login required. Users can write code in Grid Editor and execute the code

Should ‘Just Work’ Users can work with any Python code with Grid Editor without any setup

Sharing and not Hosting Grid Editor does not host any user data

Minimize User Option Grid Editor provides only a minimal number of settings to the users to customize

Software Architecture

Be Stateless Grid Editor is stateless, easy to deploy on servers
Use Old Technologies Grid Editor is designed with HTML, CSS, and JavaScript and following ARIA guidelines
Minimize Dependencies External dependencies for Grid Editor is minimal. Python parser to create AST is bundled inside

the code. Only external dependency is a third-party compiler as Grid Editor is a static website

Development Workfow

Minimum Developers Only a couple of developers (authors) implemented Grid-Coding and managed the system

Start Specifc Grid Editor started as an accessible spreadsheet representation of a code that only supports
Python

Ignore Most Users Only a handful of feedback from BLV users has been used to improve Grid Editor that we
believed will improve accessibility and user experience of BLV programmers

Table 3: A list of technical design guidelines from [33] that impacted the development of Grid Editor

ASTab to construct and synchronize Text Editor and Grid Editor, and
notifes syntax errors to users with cues.

4.3 Augmenting Abstract Syntax Tree
Figure 11 shows a simplifed grammar for Python for the code snip-
pet displayed on Figure 12(Left). Using the grammar, the Python
code is converted into AST (Figure 12(Right)). The Python code
contains only 3 lines, whereas the AST representation is complex
and contains a higher number of nodes. Note that only the leaf
nodes in AST contain a portion of the Python code (e.g., the AST
node variable name: a represents the variable on the frst line). The
internal nodes of the tree (non-leaf nodes) defne the structure for a
syntax error-free code. To represent a code in a grid-like structure
in realtime, we were interested in extracting useful information
from AST and representing it in a tabular structure, which we refer
to as ASTab.

4.3.1 Structure of ASTab. The corresponding ASTab representation
of the Python code in Figure 12 (Left) is shown in Figure 12(Bottom).
In ASTab, each code line is represented as a row. The row and col
columns contain the line and level information for the Grid Editor,
and the start and end columns represent the start and end character
position of a statement in the raw Text Editor. We also store the
parent line number of each line (null for the lines at level 1) and
a scope list for that line. Finally, we include a marker to indicate
whether a line contains an error, which is found from a malformed
AST.

4.3.2 Generating ASTab from AST. To generate ASTab from an AST,
we parse the nodes of the AST from top to bottom using a Depth
First Traversal. The intermediate nodes of the tree are used to
understand the structure and scope of diferent statements of the

Grid Layout Grid Manager

Grid Parser

Grid Renderer

Textual
Code

Code Parser AST

AST parser

ASTab
Variable

List

Grid Editor

CompilerError
Modifier

Code Output

User Input

Figure 10: Components and workfow of Grid Editor.

code. Each internal node named body is used to keep a running stack
of all the block statements nested within each other to determine the
scope and the parent. From the leaf nodes, the actual code content
is extracted and placed into stmt column of ASTab. The variable
name leaf nodes provide the name of all the variables in the code. If
the code has any syntax errors, the AST contains an Error Node,
which is used to determine all the error lines.

A key challenge of working with AST is that whitespaces and
blank lines are ignored by AST. However, to generate the tabular
structure, we need to handle the empty lines that programmers
create by pressing Enter from a line. If a new blank line has the same
indentation as the previous line, ASTab should contain a row with
empty content and the same scope as the previous line. However,
such information cannot be found in the AST. To handle this special
case, we insert a temporary lookahead statement in that blank line,
which makes AST incorporate the indentation in front, making the

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

Figure 11: A fragment of Python’s context-free grammar (CFG)
showing the syntax of statements, if_statement, and block [2].
Note that INDENT indicates the presence of a TAB or SPACE character
in a block, whereas DEDENT indicates their removal.

AST traversal easier and the ASTab consistent. The content of the
lookahead is removed from ASTab.

4.3.3 Extending Grid-Coding for Multiple Language with ASTab.
One signifcant advantage of ASTab is that it does not contain any
language-specifc information. Instead, it is built on the information
available in the AST. Therefore, extending the Grid Editor for any
other language is more straightforward with ASTab. Given an AST
of another language, we can easily extend our system for that
language.

4.4 Components of Grid Editor
Grid Editor contains four components: Grid Layout, Grid Manager,
Grid Renderer, and Grid Parser. Figure 10 provides a higher-level
overview and workfow of these four components along with ex-
ternal entities, such as the parser and ASTab. We describe the imple-
mentation and the functionality of each component below.

4.4.1 Grid Layout. Grid Layout is implemented with an HTML
table component. Each row is implemented with tr, containing
a set of td elements representing diferent cells. Statement cells
contain an input element inside to write code. In addition, the td
elements for Indentation cells have attributes for representing
unique colors for each block statement.

4.4.2 Grid Manager. Grid Manager is an essential component of
Grid Editor, which interacts with all other internal and external
components. All user interactions in Grid Editor are handled by
Grid Manager. This component maintains the structure of the grid,
manages the dynamic auto-completion, and provides interaction
cues to users. Grid Manager constantly monitors user input in the
grid. As soon as users invoke a keypress, Grid Manager intercepts
it for processing. Using the Grid Parser, a textual representation of
the code is generated, which is converted to AST and ASTab. Finally,
Grid Manager uses the ASTab to refect changes in the Grid Layout
with the help of Grid Renderer.

Grid Manager also prevents users from going out of the grid
structure and modifying invalid cells. When a new row is created
in the grid, Grid Manager initializes a set of available suggestions

Figure 12: (Left) A code snippet in Python instantiating the grammar
of a simple_statement and if_statement. (Right) The corresponding
abstract syntax tree (AST) of the code snippet. Note that INDENT and
DEDENT appear as nodes in AST, unlike as an empty character (or
removal thereof) in the code snippet). (Bottom) The augmented ab-
stract syntax table (ASTab) used in Grid-Coding. Note that columns
in ASTab represent the nested nodes in AST, whereas rows represent
line numbers of the code.

for the Statement cell using the variables list (see Figure 10) de-
pending on the position of the cell. To accomplish that, each cell is
assigned cell types - statement, block definition, and block body.
A Statement cell can have more than one cell types (e.g., a defni-
tion of an if block inside another block has two cell types - block
definition and block body). Using the cell types and the contents
of the cells in the row above, Grid Manager calculates appropriate
suggestions for that cell (e.g., no else block suggestion without an
adjacent if block).

4.4.3 Grid Renderer. Grid Renderer changes the DOM elements of
the Grid Layout to represent the code in the grid. When a new row is
created, Grid Renderer creates a new tr element in the DOM. Then,
it generates the appropriate td elements for Indentation cells,
Statement cell, and Padding cells. If this new row creates a new
level in the grid, Grid Renderer creates a new column, adds Padding
cells to all the previous columns to maintain the uniform structure,
and takes users to the new level. Similarly, if a new row is created

UIST ’22, October 29-November 2, 2022, Bend, OR, USA

in the middle of the grid, all the rows after it will be pushed down,
and the line number of each row gets modifed.

4.4.4 Grid Parser. Grid Parser converts the grid representation to
a textual format for the parser to generate AST. In our implemen-
tation, frst, we scan each row of the Grid Editor in a cell-by-cell
manner. The Statement cell in the Grid Editor can both be editable
inputs or non-editable code contents (e.g., keywords, colons). If
a Statement cell is detected in the Grid Editor, we fnd all the
children of that particular DOM element and aggregate the text
content to generate the textual representation. Indentation cells
are replaced by a predefned number of whitespaces and Padding
cells are replaced by Line Feeds to separate the lines.

4.5 Text Editor
We included a Notepad++-like plain text editor to write raw code
in our prototype. To implement this editor, we used the HTML
textarea, as the unformatted textarea provides the best user acces-
sibility experience to BLV programmers [54]. It supports all text
manipulation features that an HTML textarea supports. We also
included an auto-indention feature for block statements, which
users can turn on and of. Users can access Text Editor using the
shortcut Ctrl + 1.

4.6 Syncing Grid Editor and Text Editor
4.6.1 From Grid Editor to Text Editor. We need to refect the changes
in Text Editor whenever users change the code in Grid Editor. Grid
Manager tracks the users’ key actions when they write code in
the Grid Editor. Then, it invokes Grid Parser to generate a textual
representation of the code and places it in Text Editor to sync both
the editors.

4.6.2 From Text Editor to Grid Editor. Conversely, Grid Editor must
be consistent with the changes made to Text Editor. For this purpose,
the contents from Text Editor are extracted frst to generate the AST
and then the ASTab. Finally, ASTab is passed to Grid Manager, which
invokes the Grid Renderer to represent the code in Grid Layout.

4.7 Code Output
Code Output is a read-only HTML textarea, which is fully accessi-
ble. To run the Python code and view the output, we use an online
code execution system called judge0 [4]. Users can run the code
with the shortcut Alt + Enter. The content of Code Output can also
be accessed without executing the code using the shortcut Ctrl +
5. In case of a syntax error, we parsed the raw error output from
judge0 and rearranged it to the format shown in Figure 9b.

5 EVALUATION OF GRID-CODING
We conducted an IRB-approved study to understand the efec-
tiveness of Grid-Coding for performing programming tasks non-
visually. The following sections describe this study.

5.1 Participants
We recruited 12 BLV participants (11 males, 1 female) through
local mailing lists, university mailing lists, and public posts on
online groups for BLV users. Our inclusion criteria included adult
BLV individuals with basic Python skills who are fuent in English.

Ehtesham-Ul-Haque et al.

ID
Age/
Sex Expertise

IDE Used Profession

P1 39/M Beginner Notepad, Vim Entrepreneur
P2 35/M Expert Notepad, Notepad++ IT Instructor
P3 70/M Expert Notepad, Notepad++, Music Teacher

EdSharp
P4 47/M Expert Notepad++ Network Admin
P5 34/F Expert Notepad, Notepad++ Distance Learner
P6 26/M Expert Notepad, VS Code Distance Learner
P7 77/M Expert EdSharp Self-employed
P8* 58/M Expert EdSharp, Notepad QA Engineer
P9* 67/M Expert Notepad++, VS Code Engineer
P10 40/M Expert Notepad AT Instructor
P11 68/M Expert Notepad, EdSharp AT Instructor
P12 54/M Expert Notepad++, EdSharp, Software Developer

VS Code

Table 4: Participant demographics (programming expertise
are self-reported, * indicates participants with low-vision).

Participant varied in age from 26 to 77 (M = 51.25, SD = 16.76) and
professions: Engineer = 2, Distance Learner = 2, Assistive Technology
(AT) Instructor = 2, Software Developer = 1, Entrepreneur = 1, Network
Administrator = 1, IT Instructor = 1, Music Teacher = 1, and Self-
employed = 1. They self-reported their programming expertise,
which we could verify by observing their task performances. None
of these participants took part in our earlier participatory design
phase. Table 4 presents their demographics.

Note that gender inequality among our participants is a common
phenomenon in computer science education in general [12]. Also,
note that most participants were experts (self-reported). This is
unsurprising because programming, in and of itself, is an advanced
technical skill, and only those who are strongly motivated decide
to overcome the accessibility barriers to learn how to code.

5.2 Study Design
We used a within-subject design—all participants performed three
types of tasks using two study conditions.

5.2.1 Task Design. We chose tasks that represent common pro-
gramming practices. For example, programmers often utilize code
snippets from online forums2. Task T1 captures this aspect. Simi-
larly, identifying syntax errors in source code non-visually is chal-
lenging but an essential programming skill, which task T2 captures.
Likewise, programmers need to implement algorithms or translate
high-level design ideas into code. Task T3 captures this routine.
Note that tasks are organized in order of their complexity.

The tasks are described as follows. The fourth Task (T4) was
exploratory and not measured.

T1 Context Understanding: For a given code snippet, go to a
given line and describe its context (e.g., its current level, the
maximum level of the code, and nested information).

T2 Error Correction: For a given code snippet containing a syntax
error, locate the erroneous line and correct it.

2https://stackoverfow.com/

https://stackoverflow.com/

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

T3 Code Writing: Implement a given pseudocode in Python and
produce output by running the code.

T4 Open-ended (optional): This task was not measured. Partici-
pants explore diferent features and views of the program-
ming environment.

5.2.2 Study Conditions. Each task has the following two study
conditions: Grid Editor and Text Editor, which is the go-to editor
for most BLV programmers [15, 45]. Since our task involved code
editing, we looked for a research prototype that is accessible, sup-
ports Python, and enables code editing. Unfortunately, we did not
fnd any such prototype to use as another condition.

C1 Text Editor : Participants only use Text Editor with a screen
reader. They were allowed to run their code and check the
code output. This was our baseline.

C2 Grid Editor : Participants must use Grid Editor with a screen
reader. They were also allowed to run their code and check
the code output. However, they were not allowed to use Text
Editor.

5.3 Study Procedure
We counter-balanced the study conditions - half of the participants
used Text Editor frst, followed by Grid Editor; the other half used
the reverse order. The tasks were presented sequentially: T1 fol-
lowed by T2, followed by T3, by their increasing order of complexity.
We considered separate code snippets within a task as trials. Task
T1 had 2 trials: fnd context of a given line in a code that (i) prints
whether a given number is prime or not; and (ii) for all numbers
‘x’ in a list, if ‘x’ is within 1 and 100, prints whether ‘x’ is prime or
not, otherwise, calculates the sum of all numbers from 0 up to ‘x’.
T2 had 1 trial: fnd the error in a code where an addition operator
(‘+’) had a missing operand in the code. T3 had 2 trials: (i) fnd the
maximum of two numbers and print it; and (ii) fnd the sum of
all the positive numbers in a given list. In total, we recorded 120
data-points (= 12 participants * 2 conditions * 5 trials/condition).

Two experimenters conducted the study remotely over Zoom
or Google Meet depending on the preferences of the participants.
After collecting consent, we frst asked participants to introduce
themselves, their educational and professional background, their
programming experience in Python, and their preferred program-
ming environment and tools to write Python code.

We then shared the URL of our study prototype (see Figure 3) via
email or chat window. All participants used the Chrome browser
to run our editor except P7, who preferred a Brave browser. Partici-
pants used their preferred screen readers (e.g., NVDA, JAWS, and
VoiceOver) with their preferred verbosity and speech rate. Next, we
asked participants to share their browser tab running our editor as
well as their screen readers’ audio. We started recording the session
using Zoom or Google Meet software as per their consent.

All participants received a 30-minute training session introduc-
ing diferent features of Grid Editor, shortcuts, and audio cues.
Participants wrote simple Python code in the Grid Editor, such as
declaring and printing variables, performing arithmetic operations,
and writing if statement to get familiar with the programming
environment. Once participants became comfortable with shortcuts
and other training materials, we started our experiment by asking
them to press a special shortcut (Ctrl + P) to load a code snippet

representing a task/trial. Then, we described the task and started a
timer. We instructed them to perform a task at their regular pace
and as accurately as possible. We also instructed them not to ask
for help during a task. However, they were allowed to talk aloud to
verbalize their strategy and point out editor issues. A trial of a task
was completed when participants stated that they were done, or the
experimenter noted that it was done, or a timeout (after 10 minutes)
occurred. Before proceeding to the next trial/task, we asked them
if they had any questions. Experimenters took notes and observed
how participants interacted with the system or approached a trial
on the shared screen.

After completing all tasks in each condition, we asked the partic-
ipants to rate that editor on a Likert scale of 1 to 5, where 1 being
the least useful and 5 being the most useful. The rating questions
were designed to collect their feedback on understating the levels
and depth of a code snippet, correcting errors, writing experience,
and their confdence during coding on each editor.

In the end, we engaged in open-ended discussion, including
their preferred editor, potential use case for each editor, usage
patterns, and task performances. Each session lasted for 2 hours.
We compensated participants with an hourly rate of USD $25.

5.4 Data Collection and Analysis
We transcribed and analyzed the video recordings of participants
to investigate their programming behavior. We observed their ap-
proaches and strategies to solve each task. We also noticed their
keyboard use by following their cursor movements and listening
to screen readers’ audio to determine their navigation strategies.
We analyzed participants’ comments while performing the tasks
to understand their reaction towards the editors. We performed a
thematic analysis with initial coding to analyze the qualitative data.
While performing certain tasks, we observed remarkably similar
and novel navigation patterns in Grid-Coding. These patterns are
described in §7.

We measured the completion time (in seconds) for all tasks. T1
and T3 had multiple trials, and we averaged the completion time for
each trial. In addition, we calculated the accuracy of T1 to determine
the understanding of the given source code. Participants received
full points by providing the correct indentation level of a given
line and the name and order of all the statements in the context
hierarchy. We subtracted a point for adding an incorrect or missing
a correct statement. Again, for T3, we calculated the number of
indentation and non-indentation errors (normalized by the number
of block statements) a participant made until getting the desired
output.

For quantitative analysis, following recent guidelines for sta-
tistical analysis in HCI [30], we intentionally avoided traditional
null-hypothesis-based statistical testing in favor of estimation meth-
ods to derive 95% confdence intervals (CIs) for all measures. We
employed non-parametric bootstrapping [31] with R = 1000 itera-
tions. We also reported the mean diference as a sample efect size
and Cohen’s d as a standardized measure of efect size [29]. Results
from quantitative analysis are presented in §6.

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

0 50 100 150 200
T1: Completion Time

Text Editor

Grid Editor

Grid Editor Text Editor

0 20 40 60 80 100 120
T2: Completion Time

Text Editor

Grid Editor

Grid Editor Text Editor

0 50 100 150 200
T3: Completion Time

Text Editor

Grid Editor

Grid Editor Text Editor

(a) (b) (c)

Figure 13: Completion time (sec.) for tasks T1, T2, and T3 in two study conditions (less is better). Error bars show 95% confdence intervals
(CIs).

0 20 40 60 80 100
T1: Accuracy

Text Editor

Grid Editor

Grid Editor Text Editor

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
T3: Number of Indentation Error

Text Editor

Grid Editor

Grid Editor Text Editor

0.0 0.5 1.0 1.5
T3: Number of Non-Indentation Error

Text Editor

Grid Editor

Grid Editor Text Editor

(a) (b) (c)

Figure 14: (a) Participants’ accuracy (%) in completing task T1 in two conditions (more is better); (b) Number of indentation errors per block
statement occurred during task T3 in two conditions (less is better); (c) Number of non-indentation errors per block statement occurred during
task T3 in two conditions (less is better). Error bars show 95% confdence intervals (CIs).

0 1 2 3 4 5
Rating for Context Understanding

Text Editor

Grid Editor

Grid Editor Text Editor

0 1 2 3 4 5
Rating for Error Detection and Correction

Text Editor

Grid Editor

Grid Editor Text Editor

0 1 2 3 4 5
Rating for Easier Code Writing

Text Editor

Grid Editor

Grid Editor Text Editor

0 1 2 3 4 5
Rating for Confident Code Writing

Text Editor

Grid Editor

Grid Editor Text Editor

(a) (b) (c) (d)

Figure 15: Participants’ ratings for two study conditions on a scale of 1 (least useful) to 5 (most useful). (a) Rating for easier context under-
standing. (b) Rating for easier error detection and correction. (c) Rating for easier code writing. (d) Rating for confdence in not making syntax
errors. Error bars show 95% confdence intervals (CIs).

6 QUANTITATIVE ANALYSIS

6.1 Completion Time
We compared the completion time of each task in both conditions.
In T1 (Understanding Context), participants had to fnd the context
of a statement in a nested block. Participants were faster on average
by 94.95s (d:1.29) using Grid Editor (mean: 80.13s) than Text Editor
(mean: 175.08s), as shown in Figure 13.a. The high d value indicates
a large efect. Therefore, Grid Editor can make a large practical
diference in understanding context.

For T2 (Error Correction), participants had to detect a syntax error
in the code and correct it. Participants were faster on average by
17.68s (d: 0.5) using Grid Editor (mean: 74.05s) than Text Editor
(mean: 91.72s), as shown in Figure 13.b. The d value indicates a

medium efect size. Therefore, Grid Editor can help programmers
detect and correct errors faster than Text Editor in practice.

For T3 (Writing Code), participants had to write a source code.
They were faster on average by 11.34s (d: 0.16) using Grid Edi-
tor (mean: 125.10s vs. 136.44s), shown in Figure 13.c. The d value
indicates a small efect size. Therefore, participants had similar
performances in both editors.

6.2 Accuracy
For T1 (Understanding Context), we measured how accurately par-
ticipants could fnd the level in a deeply nested code and all the
nested blocks. Trial (i) had the given statement at level 4, and trial
(ii) at level 5. Participants were on average 35.42% more accurate (d:
2.26) in Grid Editor (mean: 100%) than in Text Editor (mean: 64.58%)

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

(see Figure 14.a). The high d value indicates a large efect size, indi-
cating that Grid Editor can signifcantly improve the accuracy of
understanding the context.

6.3 Number of Errors
6.3.1 Number of Indentation Errors. For T3 (Writing Code), we
measured the number of indentation errors per block statement
(i.e., total number of errors/total number of block statements) that
the participants made during T3. Only a single participant made
indentation errors in the Grid Editor while writing block statements
manually. Participants made on average 0.83 fewer indentation
error (d: 1.28) with Grid Editor (mean: 0.09) than with Text Editor
(mean: 0.92), as shown in Figure 14.b. The high d value indicates
a large efect. Therefore, Grid Editor allows users to manage their
indentation in code writing and avoid indentation errors.

6.3.2 Number of Non-Indentation Errors. We also measured the
number of syntax errors per block statement other than indenta-
tion errors that the participants made during T3. Participants made
on average 0.69 fewer indentation error (d: 0.81) with Grid Editor
(mean: 0.29) than with Text Editor (mean: 0.97), as shown in Fig-
ure 14.c. The d value indicates a large efect. Therefore, Grid Editor
helps writing syntax error-free code.

6.4 Subjective Feedback
We asked participants to rate both editors in 4 aspects on a Likert
scale to understand their experience in using the editors. Partici-
pants rated that Grid Editor is easier to get the context and structure
of a code (mean: 4.64, SD: 0.50) than Text Editor (mean: 2.91, SD:
0.83), which is shown in Figure 15.a. In terms of fnding and cor-
recting errors, participants found Grid Editor to be more useful
(mean: 4.45, SD: 0.69) compared to Text Editor (mean: 3.45, SD: 1.21)
(see Figure 15.b). Participants gave higher rating to Grid Editor
(mean: 3.91, SD: 1.22) than Text Editor in terms of easier code edit-
ing (mean: 3.54, SD: 1.69) (see Figure 15.c). As shown in Figure 15.d,
participants felt more confdent about writing syntax error-free
code in Grid Editor (mean: 4.18, SD: 0.75) than Text Editor (mean:
3.63, SD: 1.43).

7 OBSERVATIONS AND USAGE PATTERNS

7.1 Perception of Grid-Coding
When participants were introduced to Grid-Coding for the frst
time, we could hear the excitement in their voices: “Oh! I see what is
happening. That makes more sense!”. They could easily understand
the structure and the meaning of the cells in the grid. P11 expressed
that the Indentation cell “is telling me which block I am in, and
I have to go to the next level. That is a cool idea!”. P10 found the
Padding cell “indicates a cell beyond the statement in this row” and
moved to a lower level to fnd the Statement cell. All participants
confrmed that the grid was more structured than Text Editor. P5
found that “the grid is very clear, and the structure is great!”. P6
preferred the idea of getting more information about a cell by going
through the row or the column.

9 participants (P2-P6, P8-P11) reported that the dynamic struc-
ture of Grid Editor gave them an outline of the overall source code.
From the total number of rows and columns in the grid, they could

anticipate the length and complexity of a new code snippet. All
participants (except for P9) remarked that the line numbers in the
frst column were benefcial and informative. P10 thought the line
numbers could help him quickly identify a statement in case of an
error. P2 provided an insightful analogy about how he perceived
Grid-Coding:

“Think about coding as walking a road. For a sighted
person, he can see the road, but for a blind person, the
road is dark. As a result, he may fall. Errors are also like
falling down. But if I have something to hold on to while
walking, it will help me walk the road more easily. The
way I see it, Grid Editor gives me that structure I can
hold on to. I always know which line and level I am. Not
only that, I have the nesting information like within if,
within for in the same line. So, I am always aware of
the structure and my position in it. This awareness is
the most important source of not making any errors.”

7.2 Usage Patterns in Code Navigation
7.2.1 Usage Paterns in Code Overview. We observed how partici-
pants explored a given source code in the grid structure and found
that all three cell types supported participants to traverse the code
(see Figures 16a and 16b). Statement Cells were an indicator for
participants to go to the row above or below without changing the
level. Indentation cells triggered moving at a higher level with
the RIGHT arrow, and Padding cells triggered the opposite within
the same row. Although the trajectory of top-down navigation is
diferent from bottom-up navigation, the meaning of the cells was
retained for both approaches.

As participants became more comfortable with Grid-Coding,
they treated UP/DOWN + RIGHT Arrow as a unit operation to go to
a higher level of the code, quickly skipping an Indentation cell
(bending arrow from row 2, column 2 to row 3, column 3 in Fig-
ure 16a). Similarly, UP/DOWN + LEFT Arrow became a unit to skip a
Padding cell (bending arrow from row 4, column 4 to row 3, col-
umn 3 in Figure 16b). P5 reported that the non-editable Navigation
Mode was handy for risk-free code navigation. P6 commented: “If
I have to read a more extensive code provided by someone, and if
there are complex structures in the code, I can make easier connections
among the statements of the code with Grid Editor than Text Editor”.

7.2.2 Usage Paterns in Finding the Context of a Statement. All 12
participants found the idea of incorporating the maximum amount
of information within a row using Indentation cells useful and
innovative. They repeatedly complained about the difculty of
context understanding in text editors, which requires fnding all
block statements above that statement and counting the preceding
Spaces/Tabs. P1 reported two ways to fnd indentation in a text
editor: installing plugins that provide indentation cues with musical
notes and counting the Spaces/Tabs before each line. However, he
found both approaches to be error-prone, time-consuming, and
tedious. In Grid Editor, he could “check the Indentation cells in a
row and know about the indentation and the blocks creating the nested
structure”. Therefore, the grid made indentation easy to understand
(P1) and fnding indentation a trivial task (P9). We also observed that
all participants frequently used the Ctrl + L shortcut to listen to

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al. Text EditorText Editor
(Ctrl+1)(Ctrl+1)

a = 10
if a > 0:
 for i in range(a):
 print(i)
else:
 print("nothing to print")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2
if
a > 0
:

3 within within ifif
for
i in range(a) :

4 within within ifif within within forfor print(i)

5 else:

6 within within elseelse print("nothing to print")

Text EditorText Editor
(Ctrl+1)(Ctrl+1)

a = 10
if a > 0:
 for i in range(a):
 print(i)
else:
 print("nothing to print")

Code OutputCode Output
(Ctrl+5)(Ctrl+5)

Table Editor (Ctrl+2)Table Editor (Ctrl+2)
1 a = 10

2
if
a > 0
:

3 within within ifif
for
i in range(a) :

4 within within ifif within within forfor print(i)

5 else:

6 within within elseelse print("nothing to print")

(a) (b)

Figure 16: Exploring a Python source code in the Grid Editor. (a) Exploring in a top-down approach. (b) Exploring in a bottom-up approach.

the line number, level, and scope for context understanding during
code editing without going to Navigation Mode.

Two participants (P3 and P6) used screen reader plugins to get
indentation cues in text editors. P3, a music teacher, used musical
notes with varying pitch, and P6 used an aggregated number of
Spaces (e.g., 4 Spaces, 12 Spaces) to convey indentations. However,
when two same-level statements were far apart and separated by
statements of other indentation levels, both participants struggled
to compare the cues because of the interference of the other state-
ments. As a result, neither of them could correctly determine the
context of a statement in Text Editor, but they were successful in
Grid Editor.

7.2.3 Usage Paterns in Code Skipping. All participants reported
that Grid Editor allowed more granular and fexible source code
navigation compared to the linear navigation of Text Editor. P11
thought navigation by levels helps him focus on the part of the code
rather than the whole, which he could not do in Text Editor. More-
over, navigating all the statements at a particular level provided
him a way to check their alignments in the code to understand the
structure and semantics. P2 found the grid useful to get a higher-
level summary of the code by navigating only the top level (global
scope). The ability to skip the Padding cells and Indentation cells
and jump block-by-block with Ctrl + UP/DOWN Arrow made code
navigation faster according to 6 participants (P2, P3 P6, P8, P9, and
P11) (see blue arrows in Figure 17).

4 participants (P1, P2, P3, and P6) mentioned that the dynamic
structure allowed them to investigate the code from the maximum
level and quickly locate the portion of the code with a complex
nesting structure (see red arrows in Figure 17). According to P6,
“visually, every code goes to the right side because we are putting
spaces on the left. I think having the option to access the code from the
right side represents similar information that a sighted person gets
when they scan through the code and look at the lines that are on the
right side because of the deep nesting of those lines. It also gives an
idea of how complex the code is.”

6 participants (P1, P3, P4, P5, P8, and P11) found the line number
column to be useful to navigate a small source code or quickly move
to another line close to the current line (see black arrows in Fig-
ure 17). For an extended source code navigation, most participants
preferred the Go To option.

7.2.4 Usage Paterns in Code Comprehension. We observed that the
two modes of Grid Editor—Navigation Mode and Edit Mode—created
a clear distinction between listening to a statement or investing
it character-by-character. In Grid Editor, participants usually com-
prehended the code in Navigation Mode. They occasionally went to
Edit Mode to investigate characters if an statement required extra
attention to comprehend (e.g., list of numbers, conditions) or could
introduce potential syntax errors (e.g., quotes, parentheses). In con-
trast, code comprehension in Text Editor was mostly accomplished
by reading character-by-character to count the number of spaces.
In doing so, participants had to fnd the terminal position of a line
by checking the Spaces until they could hear LINE FEED, which in-
dicates the last character of the previous line. This checking was
more frequent and random in Text Editor.

7.3 Usage Patterns in Code Editing
7.3.1 Separation of Whitespaces from Source Code. All participants
mentioned that using whitespaces to create indentations in Text
Editor is annoying and error-prone. For example, P11 preferred a
single Space to indent his code in Text Editors to avoid counting
a large number of Spaces. However, he had to deal with sighted
programmers’ code occasionally, which typically contained 4 or
8 Spaces for indentation. Moreover, diferent editors represented
Spaces diferently, which was hard for him to understand. All 12
participants were excited that Indentation cells separated whites-
paces from the actual code, and they did not need to deal with
whitespaces in Grid Editor. P5 expressed -

“I like the idea! Because whitespaces depend on how it
is set up. Some programs use 4 spaces; some use 5. Other
programs may use only 1 whitespace. With Text Editors,
you have to know all of that. You have to be able to
decipher that. But with the Grid Editor, all of that is
right at your disposal.”

7.3.2 Writing Block Statements in Grid Editor. All participants
found merit in both manual and auto-completion options to write
block statements in Grid Editor. Eight participants (P1, P2, P4, P7, P8,
P10, and P11) agreed that the auto-completion was the error-proof
option. P1, a novice Python programmer, always preferred using
this option because he found fxing indentation errors cumbersome.
P10 thought that having both options was a good idea, as it give

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

ILOH����&��8VHUV�PIH�����'RFXPHQWV�VRQLILFDWLRQBHGLWRU�KRPH�KWPO ���

������������ſ����ʫɨƀ
�����ʰ�ƃɨř�ɭř�ɪɨř�ɨɮř�ɩɥƄ�
�������������ś�
������ʴ�ɨś�
�������ʰ�	�����
����������������ſɩř��ƀś�
������ſ��ʩ��ƀ�ʰʰ�ɥś�
���������ʰ������
����������
���������ś�
��������ſ�ř�ɑ����������������������ɑƀ�
������ś�
��������ſ�ř�ɑ������������������ɑƀ

������������ſ����ʫɬƀ
ɭ������������������������
ɪɨ��������������������
ɨɮ��������������������
ɩɥ�����������������������

�������������ſ����ʫɩƀ

ɨ �����ʰ�ƃɨř�ɭř�ɪɨř�ɨɮř�

ɩ
����
��������� ś

ɪ ����������
���
��ʴ�ɨ ś

ɫ ���������� ��������� �����ʰ�	����

ɬ ���������� ���������
����
����������ſɩř��ƀ ś

ɭ ���������� ��������� ����������
���
ſ��ʩ��ƀ�ʰʰ�ɥ ś

ɮ ���������� ��������� ���������� ��������� �����ʰ�����

ɯ ���������� ��������� ���������� ��������� �����

ɰ ���������� ���������
��� ����
ś

ɨɥ ���������� ��������� ��������� �����ſ�ř�ɑ������������

ɨɨ ���������� ��������� ����ś

ɨɩ ���������� ��������� ����������� �����ſ�ř�ɑ������������

Figure 17: Blue arrows show navigating the Statement cells at level 3 while skipping Indentation cells and Padding cells. Black arrows
show the process of fnding the context of the statement ‘if flag:’ at line 9, and then, using the line number column to go to line 2. Red
arrows demonstrate jumping to the statement ‘flag = True’ at the maximum level and fnding the context of line 7.

users fexibility to write at their own pace. He remarked, “... the
auto-complete ... is good to have for people who are trying to learn
and haven’t fgured out everything yet”.

Expert participants preferred writing the blocks manually as
they were more confdent about writing error-free code. However,
3 participants (P8, P9, and P11) mentioned that they would use
the auto-completion when writing a block that they did not use
frequently. For example, P9 did not write with block or try/catch
block as frequently as if block or for block. Therefore, he could
utilize auto-completion to avoid syntax errors in this case. P11 had
this to say:

“You had me go down the menus when I wrote ‘i’, and
there was an if, a with. That’s good too, you know!
Because lots of time you forget what to type and you
don’t want to look up in a book.”

7.3.3 Maintaining Indentation in a Source Code. Maintaining inden-
tation in Grid Editor was quite easy for all participants compared to
Text Editor, as levels are represented in columns. Maintaining con-
sistent indentation was particularly challenging in a large codebase
with highly nested statements. P6 commented that Indentation
cells could help him maintain indentation level in a longer source
code as he was always aware of the levels and nesting. P11 com-
mented:

“When I am writing a larger program [in a text editor],
I constantly need to go back and check if everything
is aligned. With this [Grid Editor], I never need to do
that because I know where everything is. I like that!...
I think this will really help us out because, in my case,

you know, when I am doing a more complex program,
this will save me from having to go back and align
everything. Typically, I use F5 to execute the code, and
python will come up and tell me ‘syntax error’. And
that really tells me nothing because I cannot see the
alignment. And this [Grid Editor] is perfect!”

7.3.4 Verifying Structure. In the Grid Editor, we noticed that par-
ticipants concentrated more on the structure than the contents for
rechecking their source code. To check whether they were writing
at the correct place, participants used UP Arrow to check the previ-
ous 1 or 2 Statement cells. We observed this behavior frequently
when participants were modifying in the middle of the grid. They
also checked the Indentation cells to ensure they were writing at
the correct level. Similar checking in Text Editor included counting
the preceding Spaces of all statements inside the body as well as
the block defnitions.

7.3.5 Error Prevention. All participants liked that Grid Editor man-
ages the editable and non-editable cells, allowing them to write only
at the valid level in Grid Editor. 7 participants (P1, P2, P4, P5, P7,
P8, and P11) found that preventing the modifcation of mandatory
Indentation cells could prevent accidental errors. 4 participants
(P1, P3, P4, and P8) tried to write an else block that did not align
with an if block but could not fnd the suggestion in the drop-
down menu. After rechecking the code, they found the mistake and
appreciated the dynamic auto-completion.

Grid Editor also prevented users from accidentally splitting their
code into two separate lines. We noticed 2 participants (P1 and P4)
did such splits in Text Editor and later struggled to understand the

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

mistake as the contents got separated. Another common error in
Text Editor was accidentally deleting the wrong number of whites-
paces while going out of indentation (P1, P3, P4, P5, P7, P10). P1
and P5 mistakenly took their cursor at the end of the previous line
while trying to start from level 1 (global scope), and wrote two
statements in the same line. Grid Editor completely removed the
possibility of such inconsistent indentations.

7.4 Usage Patterns in Code Debugging
7.4.1 Modified Error Output. The option to execute the code and
read the output within Grid Editor was appreciated by all partic-
ipants. 10 participants (P1-P5, P7-P9, P11, and P12) reported that
the modifed error output was precise and easy to understand. For
example, after reading the error message from the frst line, P11
knew what type of error to look for in the next line containing the
content. Consequently, before returning to Grid Editor, he had an
idea of the position and the reason for the error, which helped him
quickly fx it. P5 had this to say after using Code Output -

“The output is what I like the most! I can just write the
code and press Alt + Enter, and it takes me to the output.
In Notepad++, I have to save the fle, go to the command
line, write the command to run the fle, and see if this
works. But your output is so simple! Also, when there is
an error, the output gives you the line number and tells
you exactly what it is!”

7.4.2 Qickly Jumping to the Error Line. All participants found the
idea of jumping to the error row from the Code Output helped
them pinpoint and fx syntax errors in the code. P8 found Code
Output “quite convenient” and liked that it automatically took him
to the error line. P11 thought such a feature made him a quicker
programmer and enabled him to write correct code and deliver
faster while working in a team. P4 commented:

“I will debug my errors in the grid. I think it will do a
very good job, especially when I have a large code to
debug.”

7.4.3 Error Cue. All participants agreed that the error cues pro-
vided by the Grid Editor helped detect and correct errors more
quickly without interrupting them during coding. P6 liked that
Grid Editor only reminded him when he left a Statement cell with
an error. P1 felt more confdent about writing error-free code when
he did not hear any error cue from Grid Editor.

Similarly, 7 participants (P1, P2, P4, P7, P8, P9, P12) liked the
idea of a periodical error cue. P9 liked that Grid Editor beeped or
alerted him when he went to a line with an error in the Grid Editor
in Navigation Mode, which he found helpful to identify any error
when working on a code provided by others or copied from the
internet. P7 expressed -

“The error cue periodically tells me if there is an error
in the line and also the line number. So, it is easier for
me to go to that line and check the error. It is similar to
the visual error cue I would get if I were sighted. As a
result, I am always informed, and there is no chance to
forget about the error.”

The fexibility of turning of the error cue and confguring the in-
terval period was well-taken by all 12 participants. They expressed

the lack of such cues in other text editors and asked whether they
could enable the error cues while performing the tasks in Text
Editor (C1 of the study).

8 DISCUSSION AND FUTURE WORK
Support for other languages. Although our current implementa-

tion works for Python, we can extend Grid-Coding for any language,
given that its AST parser is available. For example, parentheses are
visual markers in C/Lisp-style languages like Java. Grid-Coding can
represent these markers with two additional Indentation cells,
containing open paren and close paren semantics (see Figure A1 in
Appendix). In the grid representation, the open paren appears in
the same line as the text representation. In addition, the close paren
marker is at the same level as the open paren so that BLV users
can identify the beginning and end of the scope while traversing
a level in the code. To distinguish the block statements from the
class defnitions and the functions, the Indentation cells can simi-
larly contain two additional semantics: within * class and within *
function.

Enable mixed-ability collaborations. We found that the freedom
of copying-and-pasting code snippets is a big advantage for text
editors that is lost in more structured, restrictive editors like ours.
Therefore, we believe coordinating grid and text editors and keeping
them side-by-side will be most benefcial. We also believe that such
a confguration will enable mixed-ability collaboration (e.g., sighted
and blind programmers working together), mixed-skill collabora-
tion (e.g., a novice programmer learning the code syntax [43] from
an expert), or help students transition from block-based coding to
text-based programming.

All BLV participants in our study used screen readers as their
primary assistive technology. But many low-vision programmers
with slightly higher visual acuity prefer screen magnifers over
screen readers. Recent work has shown that a grid-like tabular
structure can beneft low-vision screen magnifer users in accessing
data from the grid [41]. This is certainly encouraging. As such, we
will investigate whether or how Grid-Coding can beneft low-vision
programmers who use screen magnifers during programming.

Integration with other IDEs. It is not our goal to compete with
existing text editors. Instead, we envision that IDE developers will
recognize Grid-Coding as an accessible editor for BLV programmers
and adapt it to their product suite. In the future, we plan to integrate
Grid Editor with Jupiter Notebook (https://jupyter.org/) to allow
BLV programmers to build machine learning models in Python.

Limitations. Most participants in our study were expert Python
programmers. Therefore, their opinion and usage patterns may not
refect the expectations of novice programmers. Also, our error
detection task did not include semantic errors in programming
languages, such as type mismatch or null pointers exception. So
the performance of Grid-Coding to support these error types is un-
known. Finally, Grid Editor currently depends on a third-party code
execution system that does not allow importing external libraries.

9 CONCLUSION
This work proposed a novel programming paradigm named Grid-
Coding for BLV programmers to address code navigation, editing,

https://jupyter.org

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

and related challenges in text-based programming languages. Grid-
Coding represents a source code using a 2D grid, where each row
represents a line, and each column represents a scope in the code.
To support the proposed paradigm, we implemented Grid Editor
for Python using online participatory design with 28 BLV program-
mers. To evaluate the efectiveness of Grid Editor, we conducted a
user study with 12 BLV programmers who performed code reading,
writing, and error correction tasks in Grid Editor and Text Editor.
Our quantitative analysis indicated that Grid Editor signifcantly
improved the required time for code understanding, navigation,
and error detection. In addition, participants were 100% accurate
in understanding context, made almost no indentation errors, and
fewer non-indentation errors. They could also efectively navigate
and understand source code, manage indentation during code edit-
ing, and write syntax-error-free source code in Grid Editor. Finally,
we discussed strategies for future implementation of Grid-Coding
for other programming languages.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful feedback. This
work was supported in part by NIH subaward 87527/2/1159967.
The content is solely the responsibility of the authors and does not
necessarily represent the ofcial views of the National Institutes of
Health.

REFERENCES
[1] 2018. What’s New in JAWS 2018 Screen Reading Software. Retrieved

September 19, 2018 from https://www.freedomscientifc.com/downloads/JAWS/
JAWSWhatsNew

[2] 2020. Full Grammar specifcation. https://docs.python.org/3/reference/grammar.
html

[3] 2020. NV Access. https://www.nvaccess.org/. (Accessed on 09/20/2018).
[4] 2021. Judge0 CE - API Docs. https://ce.judge0.com/ (Accessed on 07/26/2022).
[5] 2021. Lezer - Incremental Parser System. https://github.com/lezer-parser

(Accessed on 07/26/2022).
[6] 2022. Accessible Rich Internet Applications suite of web standards. https:

//www.w3.org/WAI/standards-guidelines/aria/ (Accessed on 07/26/2022).
[7] 2022. AST Explorer. https://astexplorer.net/
[8] 2022. Blockly | Google Developers. https://developers.google.com/blockly

(Accessed on 07/26/2022).
[9] 2022. PYPL PopularitY of Programming Language. https://pypl.github.io/PYPL.

html
[10] 2022. Scratch - Imagine, Program, Share. https://scratch.mit.edu/ (Accessed on

07/26/2022).
[11] 2022. Welcome to Snap! https://snap.berkeley.edu/ (Accessed on 07/26/2022).
[12] Swati Agarwal, Nitish Mittal, Rohan Katyal, Ashish Sureka, and Denzil Correa.

2016. Women in computer science research: What is the bibliography data telling
us? Acm Sigcas Computers and Society 46, 1 (2016), 7–19.

[13] Alfred V Aho, Ravi Sethi, and Jefrey D Ullman. 1986. Compilers, principles,
techniques. Addison wesley 7, 8 (1986), 9.

[14] Khaled Albusays and Stephanie Ludi. 2016. Eliciting Programming Challenges
Faced by Developers with Visual Impairments: Exploratory Study. In Proceedings
of the 9th International Workshop on Cooperative and Human Aspects of Software
Engineering (Austin, Texas) (CHASE ’16). Association for Computing Machinery,
New York, NY, USA, 82–85. https://doi.org/10.1145/2897586.2897616

[15] Khaled Albusays, Stephanie Ludi, and Matt Huenerfauth. 2017. Interviews and
Observation of Blind Software Developers at Work to Understand Code Naviga-
tion Challenges (ASSETS ’17). Association for Computing Machinery, New York,
NY, USA, 91–100. https://doi.org/10.1145/3132525.3132550

[16] Khaled L Albusays. 2020. The Role of Sonifcation as a Code Navigation Aid:
Improving Programming Structure Readability and Understandability For Non-
Visual Users. Rochester Institute of Technology.

[17] Hind Alotaibi, Hend S Al-Khalifa, and Duaa AlSaeed. 2020. Teaching Program-
ming to students with vision impairment: impact of tactile teaching strategies
on student’s achievements and perceptions. Sustainability 12, 13 (2020), 5320.

[18] Dagmar Amtmann, Kurt Johnson, and Debbie Cook. 2002. Making web-based
tables accessible for users of screen readers. Library Hi Tech (2002).

[19] Apple Inc. 2020. VoiceOver. https://www.apple.com/accessibility/osx/voiceover/.

[20] Chieko Asakawa and Takashi Itoh. 1999. User interface of a nonvisual table
navigation method. In CHI’99 Extended Abstracts on Human Factors in Computing
Systems. 214–215.

[21] Catherine M. Baker, Lauren R. Milne, and Richard E. Ladner. 2015. StructJumper: A
Tool to Help Blind Programmers Navigate and Understand the Structure of Code.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589

[22] David Bau, Jef Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017.
Learnable programming: blocks and beyond. Commun. ACM 60, 6 (2017), 72–80.

[23] Jefrey P Bigham, Maxwell B Aller, Jeremy T Brudvik, Jessica O Leung, Lindsay A
Yazzolino, and Richard E Ladner. 2008. Inspiring blind high school students to
pursue computer science with instant messaging chatbots. In Proceedings of the
39th SIGCSE technical symposium on Computer science education. 449–453.

[24] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Speed-Dial: A Surrogate Mouse for Non-Visual Web Browsing. In Proceedings of
the 19th International ACM SIGACCESS Conference on Computers and Accessibility.
ACM, 3132531, 110–119. https://doi.org/10.1145/3132525.3132531

[25] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 5862–5868. https://doi.org/10.1145/3025453.3025731

[26] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2018.
SteeringWheel: A Locality-Preserving Magnifcation Interface for Low Vision
Web Browsing. In Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. ACM, 3173594, 1–13. https://doi.org/10.1145/3173574.
3173594

[27] Stephen A. Brewster. 1998. Using Nonspeech Sounds to Provide Navigation
Cues. ACM Trans. Comput.-Hum. Interact. 5, 3 (Sept. 1998), 224–259. https:
//doi.org/10.1145/292834.292839

[28] Mechmet Chiousemoglou and Helmut Jürgensen. 2011. Setting the table for the
blind. In Proceedings of the 4th International Conference on PErvasive Technologies
Related to Assistive Environments. 1–8.

[29] Jacob Cohen. 1988. Statistical power analysis for the social sciences. (1988).
[30] Pierre Dragicevic. 2016. Fair statistical communication in HCI. In Modern

statistical methods for HCI. Springer, 291–330.
[31] Bradley Efron. 1992. Bootstrap methods: another look at the jackknife. In

Breakthroughs in statistics. Springer, 569–593.
[32] António Ramires Fernandes, Alexandre Carvalho, José João Almeida, and Alberto

Simoes. 2006. Transcoding for Web Accessibility for the Blind: Semantics from
Structure. (2006).

[33] Philip Guo. 2021. Ten Million Users and Ten Years Later: Python Tutor’s Design
Guidelines for Building Scalable and Sustainable Research Software in Academia.
In The 34th Annual ACM Symposium on User Interface Software and Technology.
1235–1251.

[34] Alex Hadwen-Bennett, Sue Sentance, and Cecily Morrison. 2018. Making pro-
gramming accessible to learners with visual impairments: a literature review.
International Journal of Computer Science Education in Schools 2, 2 (2018), 3–13.

[35] Earl W Huf, Kwajo Boateng, Makayla Moster, Paige Rodeghero, and Julian
Brinkley. 2020. Examining the work experience of programmers with visual
impairments. In 2020 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 707–711.

[36] Joe Hutchinson and Oussama Metatla. 2018. An initial investigation into non-
visual code structure overview through speech, non-speech and spearcons. In
Extended Abstracts of the 2018 CHI Conference on Human Factors in Computing
Systems. 1–6.

[37] JAWS – screen reading software. 2022. Navigating Web Pages.
[38] Shaun K Kane and Jefrey P Bigham. 2014. Tracking

@stemxcomet: teaching programming to blind students via 3D printing, crisis
management, and twitter. In Proceedings of the 45th ACM technical symposium on
Computer science education. 247–252.

[39] Rushil Khurana, Duncan McIsaac, Elliot Lockerman, and Jennifer Mankof. 2018.
Nonvisual interaction techniques at the keyboard surface. In Proceedings of the
2018 CHI Conference on Human Factors in Computing Systems. 1–12.

[40] Mario Konecki, Alen Lovrenčić, and Robert Kudelić. 2011. Making programming
accessible to the blinds. In 2011 Proceedings of the 34th International Convention
MIPRO. IEEE, 820–824.

[41] Hae-Na Lee and Vikas Ashok. 2022. Customizable Tabular Access to Web Data
Records for Convenient Low-vision Screen Magnifer Interaction. ACM Transac-
tions on Accessible Computing (TACCESS) 15, 2 (2022), 1–22.

[42] Hae-Na Lee, Sami Uddin, and Vikas Ashok. 2020. TableView: Enabling Efcient
Access to Web Data Records for Screen-Magnifer Users. In The 22nd Interna-
tional ACM SIGACCESS Conference on Computers and Accessibility (Virtual Event,
Greece) (ASSETS ’20). Association for Computing Machinery, New York, NY, USA,
Article 23, 12 pages. https://doi.org/10.1145/3373625.3417030

[43] Yuhan Lin and David Weintrop. 2021. The landscape of Block-based programming:
Characteristics of block-based environments and how they support the transition
to text-based programming. Journal of Computer Languages 67 (2021), 101075.

https://www.freedomscientific.com/downloads/JAWS/JAWSWhatsNew
https://www.freedomscientific.com/downloads/JAWS/JAWSWhatsNew
https://docs.python.org/3/reference/grammar.html
https://docs.python.org/3/reference/grammar.html
https://www.nvaccess.org/
https://ce.judge0.com/
https://github.com/lezer-parser
https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/WAI/standards-guidelines/aria/
https://astexplorer.net/
https://developers.google.com/blockly
https://pypl.github.io/PYPL.html
https://pypl.github.io/PYPL.html
https://scratch.mit.edu/
https://snap.berkeley.edu/
https://doi.org/10.1145/2897586.2897616
https://doi.org/10.1145/3132525.3132550
https://www.apple.com/accessibility/osx/voiceover/
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/3132525.3132531
https://doi.org/10.1145/3025453.3025731
https://doi.org/10.1145/3173574.3173594
https://doi.org/10.1145/3173574.3173594
https://doi.org/10.1145/292834.292839
https://doi.org/10.1145/292834.292839
https://doi.org/10.1145/3373625.3417030

UIST ’22, October 29-November 2, 2022, Bend, OR, USA Ehtesham-Ul-Haque et al.

[44] Stephanie Ludi, Lindsey Ellis, and Scott Jordan. 2014. An accessible robotics
programming environment for visually impaired users. In Proceedings of the 16th
international ACM SIGACCESS conference on Computers & accessibility. 237–238.

[45] Sean Mealin and Emerson Murphy-Hill. 2012. An exploratory study of blind soft-
ware developers, In Visual Languages and Human-Centric Computing (VL/HCC),
2012 IEEE Symposium on. Proceedings of IEEE Symposium on Visual Languages
and Human-Centric Computing, VL/HCC, 71–74. https://doi.org/10.1109/VLHCC.
2012.6344485

[46] Lauren R Milne and Richard E Ladner. 2018. Blocks4All: overcoming accessi-
bility barriers to blocks programming for children with visual impairments. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems.
1–10.

[47] Farhani Momotaz, Md Touhidul Islam, Md Ehtesham-Ul-Haque, and Syed Masum
Billah. 2021. Understanding Screen Readers’ Plugins. In The 23rd International
ACM SIGACCESS Conference on Computers and Accessibility. ACM, 1–10. https:
//doi.org/10.1145/3441852.3471205

[48] Lourdes Moreno, Xabier Valencia, J Eduardo Pérez, and Myriam Arrue. 2018.
Exploring the Web navigation strategies of people with low vision. In Proceedings
of the XIX International Conference on Human Computer Interaction. 1–8.

[49] Aboubakar Mountapmbeme, Obianuju Okafor, and Stephanie Ludi. 2022. Address-
ing Accessibility Barriers in Programming for People with Visual Impairments:
A Literature Review. ACM Transactions on Accessible Computing (TACCESS) 15, 1
(2022), 1–26.

[50] NVDA-Project. 2020. GitHub - nvaccess/nvda: NVDA, the free and open source
Screen Reader for Microsoft Windows. https://github.com/nvaccess/nvda. Ac-
cessed: 2020-06-29.

[51] Afra Pascual, Mireia Ribera, Toni Granollers, and Jordi L Coiduras. 2014. Impact of
accessibility barriers on the mood of blind, low-vision and sighted users. Procedia
Computer Science 27 (2014), 431–440.

[52] Venkatesh Potluri, Priyan Vaithilingam, Suresh Iyengar, Y. Vidya, Manohar
Swaminathan, and Gopal Srinivasa. 2018. CodeTalk: Improving Programming
Environment Accessibility for Visually Impaired Developers. In Proceedings of
the 2018 CHI Conference on Human Factors in Computing Systems (Montreal QC,
Canada) (CHI ’18). Association for Computing Machinery, New York, NY, USA,
1–11. https://doi.org/10.1145/3173574.3174192

[53] Dominic Roberts and Karlton Weaver. 2011. Audio Aids in Source Code. Retrieved
September 19 (2011), 2017.

[54] Emmanuel Schanzer, Sina Bahram, and Shriram Krishnamurthi. 2019. Accessible
AST-Based Programming for Visually-Impaired Programmers. In Proceedings of
the 50th ACM Technical Symposium on Computer Science Education (Minneapolis,
MN, USA) (SIGCSE ’19). Association for Computing Machinery, New York, NY,
USA, 773–779. https://doi.org/10.1145/3287324.3287499

[55] Ann C. Smith, Justin S. Cook, Joan M. Francioni, Asif Hossain, Mohd Anwar,
and M. Fayezur Rahman. 2003. Nonvisual Tool for Navigating Hierarchical
Structures. SIGACCESS Access. Comput. 77–78 (Sept. 2003), 133–139. https:
//doi.org/10.1145/1029014.1028654

[56] Dimitris Spiliotopoulos, Gerasimos Xydas, Georgios Kouroupetroglou, Vasilios
Argyropoulos, and Kalliopi Ikospentaki. 2010. Auditory universal accessibility of
data tables using naturally derived prosody specifcation. Universal Access in the
Information Society 9, 2 (2010), 169–183.

[57] Andreas Stefk, Roger Alexander, Robert Patterson, and Jonathan Brown. 2007.
WAD: A feasibility study using the wicked audio debugger. In 15th IEEE Interna-
tional Conference on Program Comprehension (ICPC’07). IEEE, 69–80.

[58] Andreas Stefk, Andrew Haywood, Shahzada Mansoor, Brock Dunda, and Daniel
Garcia. 2009. Sodbeans. In 2009 IEEE 17th International Conference on Program
Comprehension. IEEE, 293–294.

[59] Andreas Stefk, Christopher Hundhausen, and Robert Patterson. 2011. An Em-
pirical Investigation into the Design of Auditory Cues to Enhance Computer
Program Comprehension. Int. J. Hum.-Comput. Stud. 69, 12 (Dec. 2011), 820–838.
https://doi.org/10.1016/j.ijhcs.2011.07.002

[60] Andreas Stefk and Richard Ladner. 2017. The quorum programming language.
In Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science
Education. 641–641.

[61] Andreas Stefk and Susanna Siebert. 2013. An empirical investigation into pro-
gramming language syntax. ACM Transactions on Computing Education (TOCE)
13, 4 (2013), 1–40.

[62] Andreas M Stefk, Christopher Hundhausen, and Derrick Smith. 2011. On the
design of an educational infrastructure for the blind and visually impaired in com-
puter science. In Proceedings of the 42nd ACM technical symposium on Computer
science education. 571–576.

[63] Jaime Sánchez and Fernando Aguayo. 2006. APL: Audio Programming Language
for Blind Learners. https://doi.org/10.1007/11788713_192

[64] Bruce N Walker, Amanda Nance, and Jefrey Lindsay. 2006. Spearcons: Speech-
based earcons improve navigation performance in auditory menus. Georgia
Institute of Technology.

[65] David Weintrop. 2019. Block-based programming in computer science education.
Commun. ACM 62, 8 (2019), 22–25.

[66] Kristin Williams, Taylor Clarke, Steve Gardiner, John Zimmerman, and Anthony
Tomasic. 2019. Find and Seek: Assessing the Impact of Table Navigation on
Information Look-up with a Screen Reader. ACM Trans. Access. Comput. 12, 3,
Article 11 (Aug. 2019), 23 pages. https://doi.org/10.1145/3342282

[67] Kristin Williams, Taylor Clarke, Steve Gardiner, John Zimmerman, and Anthony
Tomasic. 2019. Find and seek: Assessing the impact of table navigation on infor-
mation look-up with a screen reader. ACM Transactions on Accessible Computing
(TACCESS) 12, 3 (2019), 1–23.

A APPENDIX

A.1 Grid Coding for C-style Languages
Since Grid-Coding utilizes the abstract syntax tree (AST) of a pro-
gramming language, we can easily extend it for any programming
language. For example, Figure A1 presents how Grid-Coding can
render a piece of Java code. Note that it introduces several new
Indentation cells (e.g., open paren, close paren, within * class, and
within * function) to convey Java-specifc semantics. The grid repre-
sentation of a sample Java code is shown in Figure A1 (‘;’ is optional
in Grid-Coding). Notice the diferent positions of opening curly
braces in Figure A1(a) for the if statement (line 3) and the else
statement (line 8).

https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1109/VLHCC.2012.6344485
https://doi.org/10.1145/3441852.3471205
https://doi.org/10.1145/3441852.3471205
 https://github.com/nvaccess/nvda
https://doi.org/10.1145/3173574.3174192
https://doi.org/10.1145/3287324.3287499
https://doi.org/10.1145/1029014.1028654
https://doi.org/10.1145/1029014.1028654
https://doi.org/10.1016/j.ijhcs.2011.07.002
https://doi.org/10.1007/11788713_192
https://doi.org/10.1145/3342282

Grid-Coding: An Accessible, Eficient, and Structured Coding Paradigm ... UIST ’22, October 29-November 2, 2022, Bend, OR, USA

public class Example {
 public static void main(String args[]) {
 int a = 10;
 if (a > 0) {
 doSomething();
 }
 else
 {
 doSomethingElse();
 }
 }
}

1
2
3
4
5
6
7
8
9

10
11
12

1

2 within Example class open paren

3 within Example class within Main function

4 within Example class within Main function

5 within Example class within Main function

6 within Example class within Main function

7 within Example class within Main function

8 within Example class within Main function

9 within Example class within Main function

10 within Example class within Main function

11 within Example class within Main function close paren

12 within Example class close paren

public class Example open paren

public static void main..

 open paren

 within if

 within if close paren

 open paren

 within else

 within else close paren

int a = 10;

if (a > 0)

doSomething();

else

 within else doSomethingElse();

 within else

Figure A1: Extension of Grid-Coding for Java (C/Lisp-style) programming language. (Left) A sample Java code written in Visual Studio Code.
(Right) Representation of the Java code in a grid. All Grid-Coding principles, such as each row representing a single line, each column repre-
senting a level (except for the frst column representing line numbers), and all three cell types are also present. Two additional semantic cells
- open paren and close paren - have been used to replace the curly braces that enclose a scope in Java. These markers always appear at the same
level for BLV users to fnd them while traversing a level. Further, as Java always contains functions within a class, we added two additional
semantics - within * class and within * function in the Indentation cells to distinguish them from other block statements. Block statements
have the same Indentation cells as before for understanding context.

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Assistive Technology-Related Issues
	2.2 Programming Environments-Related Issues
	2.3 Programming Language-Related Issues
	2.4 Relationship with Block-Based Coding
	2.5 Audio Cues for Accessible Programming
	2.6 Tabular Representation of Source Code
	2.7 Uniform Abstract Syntax Tree (AST)

	3 Design and Overview of Grid-Coding
	3.1 Participatory Design
	3.2 Code Presentation
	3.3 Code Navigation
	3.4 Code Editing
	3.5 Error Detection in Grid Editor

	4 Grid Editor: An Instantiation of Grid-Coding Paradigm
	4.1 Implementation Guidelines
	4.2 Technical Components
	4.3 Augmenting Abstract Syntax Tree
	4.4 Components of Grid Editor
	4.5 Text Editor
	4.6 Syncing Grid Editor and Text Editor
	4.7 Code Output

	5 Evaluation of Grid-Coding
	5.1 Participants
	5.2 Study Design
	5.3 Study Procedure
	5.4 Data Collection and Analysis

	6 Quantitative Analysis
	6.1 Completion Time
	6.2 Accuracy
	6.3 Number of Errors
	6.4 Subjective Feedback

	7 Observations and Usage Patterns
	7.1 Perception of Grid-Coding
	7.2 Usage Patterns in Code Navigation
	7.3 Usage Patterns in Code Editing
	7.4 Usage Patterns in Code Debugging

	8 Discussion and Future Work
	9 Conclusion
	Acknowledgments
	References
	A Appendix
	A.1 Grid Coding for C-style Languages

