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Fig. 1. Illustrations of Space-Mag in three magnification modes. (a) shows the UI of an unmagnified app, and (b) shows its
space-compacted UI produced by Space-Mag. Notice that (b) is functionally equivalent to (a) but contains less whitespace;
thus can pack more content in magnified form in the same screen real estate. Space-Mag also applies a discernible border
(e.g., red-colored border) to make UI elements easier for low-vision users to see and interact with. (c)-(e) show how the
space-compacted UI appears in 3 magnification modes: (c) fullscreen; (d) window ; and (e) fisheye.

Low-vision users interact with smartphones via screen magni�ers, which uniformly magnify raw screen pixels, including

whitespace and user interface (UI) elements. Screen magni�ers thus occlude important contextual information, such as visual

cues, from the user’s viewport. This requires low-vision users to pan over the occluded portions and mentally reconstruct

the context, which is cumbersome, tiring, and mentally demanding. Prior work aimed to address these usability issues with

screen magni�ers by optimizing the representation of UI elements suitable for low-vision users or by magnifying whitespace

and non-whitespace content (e.g., text, graphics, borders) di�erently. This paper combines both techniques and presents

SpaceXMag, an optimization framework that automatically reduces whitespace within a smartphone app, thereby packing

more information within the current magni�cation viewport. A study with 11 low-vision users indicates that, with a traditional

screen magni�er, the space-optimized UI is more usable and saves at least 28.13% time for overview tasks and 42.89% time for
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target acquisition tasks, compared to the original, unoptimized UI of the same app. Furthermore, our framework is scalable,

fast, and automatable. For example, on a public dataset containing 16, 566 screenshots of di�erent Android apps, it saves

approximately 47.17% of the space (area) on average, with a mean runtime of around 1.44 seconds, without requiring any

human input. All are indicative of the promise and potential of SpaceXMag for low-vision screen magni�er users.

CCS Concepts: • Human-centered computing → Interaction paradigms; Accessibility technologies; Mobile devices; User

interface design.

Additional Key Words and Phrases: Low-vision Users, Screen Magni�ers, Zoom Lenses, Fisheye E�ect, (Focus+Context)-based

Magni�cation Techniques.
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1 INTRODUCTION

Low vision is a spectrum of vision impairments that cannot be fully corrected with glasses, medication, or
surgery; individuals with low vision can lose the peripheral or central vision or have blurred vision, extreme
light sensitivity, tunnel vision, and near-total blindness [11, 17]. This population relies on screen magni�ers, such
as Zoom [3] in iPhone, Magni�cation in Android [1], to interact with smartphones. A typical screen magni�er
uniformly magni�es screen content (e.g., 300% or 3×), including whitespace, as a blanket operation, causing the
occlusion of important contextual information from the user’s viewport. Consequently, low-vision users must
manually pan over these occluded portions and mentally reconstruct the contextual information necessary for
interaction [48]. This interaction is slow, cumbersome, and error-prone, as well as physically tiring and mentally
demanding [22, 66, 74, 75].
Prior work has proposed two techniques, broadly categorized, to partly address these usability issues with

uniformmagni�cation. The �rst technique is user interface (UI) adaptation (e.g., [33, 35–38]) to cater to individuals’
preferences and abilities. Researchers adapt the UI elements of an app for low-vision users by framing the
magni�cation as an optimization problem, where the constraints include device types (desktop, mobile), screen
sizes, input methods (touch-based, pointer-based), and users’ preferences. The cost function equals the user e�ort
required to interact with the magni�ed UI elements.
The second technique is di�erential magni�cation (e.g., [12, 21, 22]), where, instead of applying a uniform

magni�cation throughout, di�erent levels of magni�cation are applied to di�erent UI elements. For example,
SteeringWheel [22] applies less magni�cation to whitespace within a single UI or a UI group than the non-
whitespace content (e.g., texts, graphics, borders) so that the non-whitespace content stays as close as possible.
This preserves the context of UI elements within the current magni�cation viewport.

Both techniques have notable strengths and limitations. For instance, UI adaptations (via optimization) are
more capable and can automatically �nd an optimal UI representation for low-vision users. In addition, this
representation can eliminate the need for a separate screen magni�er. However, the current implementations
are computationally expensive and require some human input (e.g., interaction traces, user preferences, and
design pattern speci�cations); hence these are not fully automatic nor work for an arbitrary app. In contrast,
di�erential magni�cation techniques are fast and run near real-time (i.e., less than 250 ms). However, their
current implementations are ad hoc and domain-speci�c (e.g., demonstrated on webpages); require access to
the meta-representation of an app, such as bounding rectangles, types, and parent-child relationships of all UI
elements within the app; and the users must use a separate screen magni�er.

This paper presents Space-Mag, combining the strengths of both techniques while minimizing their limita-
tions. Space-Mag automatically reduces whitespace in smartphone apps to facilitate di�erential magni�cation. It
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frames space reduction as a non-linear optimization problem. The constraints include the alignment, hierarchy,
and relative positions of UI elements before magni�cation; and the cost function equals the total whitespace
in the screen. Space-Mag takes the meta-representation of the UI elements in a mobile app and produces an
optimally space-compacted meta-representation of the same elements. This meta representation can easily be
extracted from the built-in accessibility supports on iOS [19] and Android [16] operating systems. Further, it
does not need human input; thus, it is scalable and works for an arbitrary app in the wild. By design, Space-Mag
preserves the UI elements’ spatial layout and relative positions in the original app, as low-vision users do not
want a completely “di�erent” app (or website) [76]. Furthermore, informed by prior work, Space-Mag applies a
discernible visual marker (e.g., red color) to indicate each UI element, the current focus, and the magni�cation
viewport (if applicable) [22, 34, 48]. The before and after optimization of an app’s UI is shown in Figure 1.a
(before) and Figure 1.b (after).

We demonstrate Space-Mag’s e�ectiveness in three possible magni�cation modes [18, 26, 48, 69]: (i) fullscreen
mode, when the magni�cation viewport takes up the entire screen (see Figure 1.c); (ii) window mode, when the
viewport is a rectangular window (smaller than the screen size) that follows the user’s cursor but occludes the
unmagni�ed content (see Figure 1.d); and (iii) �sheye mode, when the viewport is circular that follows the user’s
cursor but does not occlude the unmagni�ed content (see Figure 1.e).
Our study with 11 low-vision participants showed that the participants took 28.13% less time (statistically

signi�cant) to gain an overview of interactive screenshots of di�erent apps with a screen magni�er using space-
optimized UI produced by Space-Mag, compared to the original UI (baseline), in all three modes. Similarly, they
took at least 42.89% less time to acquire targets using space-optimized UI than the baseline, which was also
statistically signi�cant. Furthermore, the participants reported that the space-optimized UI is more usable and
makes them more aware of their current context (e.g., focus, screen location), as it packs more information within
the magni�cation viewport. Our study also revealed that Space-Mag is most e�ective in window mode over
fullscreen or �sheye mode. We additionally discovered that UI elements’ color, contrast, font, and layout are
important contributors to participants’ performance.
We also demonstrate the scalability of Space-Mag. To that end, we ran it on a public dataset, RICO-SCA [7],

containing 25, 677 screenshots of di�erent Android apps with correct meta-representations (e.g., no UI element has
a negative coordinate or a bounding rectangle of area 0; and no UI element overlaps with another non-children
UI element in its meta-representation). On average, Space-Mag saved approximately 47.17% space (area) per
screenshot, with a mean runtime of around 1.44 seconds. Compared to prior work on UI adaptation, such as
SUPPLE [35], which can take 13 seconds to 6 minutes to optimize, Space-Mag’s runtime only takes 0.21 to 6.06

seconds (60× faster).
We summarize our contributions as follows:
• We proposed Space-Mag, an optimization framework to automatically produce a space-compacted meta-
representation of a smartphone app (§3.1, §3.3).

• We demonstrated Space-Mag in two commonly used magni�cation modes (e.g., fullscreen and window)
for low-vision users, as well as in �sheye mode, which is unavailable to current screen magni�ers (§4).

• We presented a study with 11 low-vision users to evaluate Space-Mag in performing commonmagni�cation
tasks (e.g., overview, target acquisition), understanding user experience, and discovering user strategies
and di�erent magni�cation modes (§6).

• We demonstrated Space-Mag’s scalability by running it on a public dataset, RICO-SCA [7], and reported
metrics such as the average percentage of space saved and average runtime (§7).
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2 BACKGROUND AND RELATED WORK

This section discusses earlier research on magni�cation types, dynamic adaptation of user interfaces, and
optimization model types related to our research’s design decisions.

2.1 Uniform and Non-uniform Magnification

Applications and webpages at their default scale (i.e., 1x or 100%) are often di�cult to see for people with low
vision [75]. A solution to this problem is screen magni�cation. There are two basic types of magni�cation: uniform
and non-uniform. Uniform magni�cation involves applying one speci�c level of magni�cation (e.g., 150% or
200%) to each pixel on the screen. Popular magni�ers such as ZoomText [14], Windows Magni�er [9], and iOS
Accessibility Zoom [3] make use of this kind of magni�cation. Consequently, low-vision users mostly use such
magni�cation with basic zoom and pan.

From a technical point of view, uniform magni�cation is easily achievable by using a�ne transformations [4]
and scale matrices [8]. However, such magni�cation limits the portion of the screen the user can see at once. To
get to the other portions of the screen, users must use panning—either by using the mouse cursor (on desktops)
or the touch and drag gesture (on touchscreen devices). Needing to pan is a well-known issue brought on by the
uniform magni�er’s limited viewport, as explored by Kline et al. [48].

Non-uniform magni�cation, on the other hand, works by applying di�erent magni�cation levels on di�erent
objects on the screen. iOS Accessibility Zoom [3] o�ers a window magni�cation mode where only the contents
inside a window get magni�ed (like a magnifying glass), and anything outside the window remains at their
default magni�cation level. Other examples include �sheye lenses [18, 26, 69] and applying locality preserving
magni�cation in a webpage [22]. Billah et al. [22] proposed identifying the semantically related local groups
in webpages and preserving their connections before and after magni�cation. To achieve such a result, the
authors used a space-reduction algorithm that modi�es the size of the object boundaries in HTML. However,
the authors only provided a pseudo-code for webpages, with no mention of an open-source library or package
and no instructions on how to generalize the algorithm for non-HTML content. On the other hand, this paper
provides an automatic space optimization framework that is scalable (§7), evaluated on smartphone UIs but easily
extensible to desktop apps and webpages, and readily integrates into the graphics rendering pipeline of di�erent
operating systems (§8).

2.2 Bifocal Display Techniques

A type of non-uniform magni�cation is the bifocal display technique. We can categorize such techniques into two
main types—i) Overview and Detail [46, 63], ii) Focus and Context [61]. In the former type, a small window
(i.e., overview) on the screen (usually at the top-right or the bottom-right) shows the location of the viewport
with regards to the entire screen [46, 63]. The overview window is only meaningful when some magni�cation
(>100%) is already applied to the original screen. While this magni�cation mode is bene�cial in some tasks such
as basic UI navigation [45, 59, 62], its limitations appear in other tasks such as locating a small locality in a very
densely populated map [61]. This method is not particularly helpful for low-vision people as the fraction of pixels
that can be dedicated to the overview window is very small.
On the other hand, the latter type, i.e., the (focus + context)-based magni�cation techniques [41, 49, 61] is

capable of displaying additional information in the context view (e.g., names, abbreviations, or distinct visual
properties of the localities). Such a feature enables the user to get more contextual information and navigate
easily. (Focus + context) techniques are also shown to be e�ective when users browse dense websites requiring to
focus on small portions [49], perform large steering tasks [43], or attempt to select small targets with a stylus [67].
Agarwal et al. [13] designed WidgetLens, a (focus + context)-based magni�cation tool to work with tiny widgets
on displays with high pixel density.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 59. Publication date: June 2023.



Space-Mag: An Automatic, Scalable, and Rapid Space Compactor for Optimizing Smartphone App Interfaces... 59:5

The apparent limitation of (focus + context) magni�cation techniques is associated with how the transition be-
tween focus and context is handled [28, 42]. Most techniques to achieve such transitions are inspired by real-world
objects and phenomenons such as magnifying glasses, rubber sheets [70], and general surface deformations [27].
However, a primary magnifying glass lens creates occlusion of the content nearby to the focus [68]. Graphical
�sheye lenses [69] solve the occlusion problem but introduces a problem of its own by distorting the contents in
the transition space. Such distortion makes target acquisition at high magni�cation levels tiresome [42]. To reduce
the impact of space distortion, researchers have explored the use of additional dimensions such as time [42] and
translucence [61].

In summary, each non-uniform magni�cation technique has advantages and limitations. As such, we include
magnifying glass (in window mode) and a �sheye lens (in �sheye mode) mode in our prototype design (§4).

2.3 User Interface Adaptation

2.3.1 Human Preference-based UI Adaptation. UI adaptation based on human (e.g., user, developer) choices and
device characteristics has attracted some attention over the years [35, 37, 38, 53, 58, 64, 65], having its origins in
the domain of automated design tools [73]. Cardelli [25] advocated decoupling the UI generation from the backend
application program. The work included several tools to generate/manipulate essential UI components (e.g.,
cursor, text, pop-up dialog, window) until they met the designer’s needs. Fogarty et al. proposed GADGET [33],
an experimental toolkit that could generate optimization concept abstractions (e.g., decreasing UI item overlap,
optimizing cluster shapes in grids), assisting designers in using optimization as a strategy to design UIs.
The most notable work in the domain would be SUPPLE as proposed by Gajos et al. [35–37]. The SUPPLE

system considered UI rendering an optimization problem—with the device type (e.g., desktop computers, mobile
devices), screen size, input method (e.g., touch-based, pointer-based), and users’ preferences (e.g., layout) as
constraints, and required user e�ort to use the UI as the cost function. Besides choosing the optimal layout, the
SUPPLE system also picked the individual widgets to be rendered in the UI. The same authors later proposed
SUPPLE++ [38], an extension of SUPPLE where the model also adapted according to users’ vision and motor
capabilities, in addition to its original functionalities.
Tools prior to SUPPLE like XIML [65], Pebbles project [58], and iCrafter [64] all lacked adaptability for

supporting a wide range of devices and screen sizes. Lin et al. proposed Damask [53], a tool that can adapt UIs
for other devices once it is designed for one. While designing for the �rst device or scenario using Damask,
the designer has to specify the relevant design patterns for the UI. Despite o�ering such extensibility options,
Damask failed to cope with situations where the device constraints are hard to anticipate [35].
A limitation of all these approaches is that they require some level of human input (i.e., interaction traces,

user preferences, and design pattern speci�cations). On the other hand, what we are proposing adapts the UI
for low-vision users without requiring external human input. However, we took inspiration from SUPPLE [35]
and other prior works in similar trajectory [47, 58] to represent the UI item-speci�c information and inter-item
relationships using a domain model (e.g., directed acyclic graph [5]).

2.3.2 Opportunistic UI Adaptation. Bigham [21] proposed automatic and gradual magni�cations of a web UI as
long as speci�c errors (e.g., horizontal scrolling, overlapping text, narrow word wrapping) do not appear. On
average, this approach achieved 1.6x (i.e., 160%) magni�cation without introducing the aforementioned speci�c
errors. However, the author did not claim this approach to be a robust solution for people with visual impairments
such as low vision. A closely related work is Alotaibi et al.’s SALEM [15], a Java tool to automatically �x size-
related accessibility issues (e.g., too small buttons or icons) in Android applications. However, this approach
requires access to an app’s APK �le as well as an accessibility report and can take a substantial amount of time
(≈ 19 minutes in the worst case) to generate the output APK.
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Fig. 2. A toy application with five UI elements in a coor-
dinate system (origin: top-le� corner). #1 is the top-level
UI containing #2 and #3; #2 contains #4 and #5; and
#3 UI contains #6. The bounding rectangles are shown
in di�erent colors. . -axis grows from top to bo�om.
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Fig. 3. The UI hierarchy of the top application shown in
Figure 2.We represent this hierarchy as a directed acyclic
graph (DAG), where each node represents a UI element,
and each edge represents the parent-child relationship
between two nodes (from the parent to the child).

Billah et al. [22] proposed a locality-preserving magni�cation technique (‘SteeringWheel’) in webpages—where
the authors preserve the proximity of locally connected groups before and after the adaptation. The usefulness of
this approach, however, was demonstrated via the use of a physical dial. Later, Lee et al. [51] proposed ‘TableView’,
a tool that can extract website information, build relationships among UI items, and render them in a tabular layout,
needing signi�cantly less space than a typical website. The tool showed signi�cant performance improvement
over ‘SteeringWheel’ with low-vision users doing speci�c tasks (e.g., job search, shopping). The same authors
later proposed ‘TableView+’ [50], which gained another minor improvement in task completion times over
‘TableView’. Unfortunately, all of these approaches are for web UIs only, with their current implementations
mostly being ad hoc.

2.3.3 Machine Learning-based UI Adaptation. Mezhoudi et al. [54] introduced a machine learning-based approach
to UI adaptations. First, the approach asks users to rate their satisfaction levels on di�erent layouts. As the
user moves through di�erent layouts, an automated system records their ratings and later uses them to train a
prediction model. This approach, again, requires user input to adapt the UI—something our method does not
need. Duan et al. [32] proposed a neural network model, to �nd a UI that has the minimum error rate and task
completion times through the optimization process. The model used a manually-labeled dataset and had minimal
attention to making contents bigger to make them accessible for low-vision users. Wu et al. [80] proposed Re�ow,
a technique where the UI layout and items are identi�ed using a computer vision-based approach, an optimization
(to minimize UI item selection times) is applied to the layout, and the app is re-rendered according to the new
layout. The approach, however, contains no information on runtime, which is an important factor in UI adaptation
to make the experience seamless.

3 SPACE-MAG: PROBLEM FORMULATION

3.1 Mathematical Representation of User Interfaces

An app contains two types of UI elements: containers and leaves. The containers are parent elements (e.g., groups,
subgroups, tables, frames, localities) that contain leaves. For example, #1, #2, and #3 in Figure 2 are containers.
Leaves are atomic elements (e.g., a button, an icon, a speci�c text), such as#4,#5, and#6 in Figure 2. The bounding
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Space-Mag: An Automatic, Scalable, and Rapid Space Compactor for Optimizing Smartphone App Interfaces... 59:7

rectangle of each UI can be represented by the coordinates of its two corners: top-left, (Gtop-left, ~top-left); and
bottom-right, (Gbottom-right, ~bottom-right). The parent-child relationships of UI elements can be captured by a
Directed Acyclic Graph (DAG), G = {N,E}, where N is the set of all UI elements (both types), and E is the set
of all directed edges; the direction pointing from the parent to the child. Figure 3 shows that DAG for the UI
elements in Figure 2.

3.1.1 Node A�ributes. We assume each #8nN has at least four attributes: Coord(#8), Width(#8), Height(#8),
and Area(#8). Coord(#8) returns the bounding rectangle of #8 a tuple of four corners along - and . axes (as
shown in Figure 2); Width(#8), Height(#8), and Area(#8) return its width (along - -axis), height (along . -axis)
and area, respectively. Mathematically, these attributes are de�ned as follows:

Coord(#8) = < G
(i)

top-left
, ~(i)

top-left
, G(i)

bottom-right
, ~(i)

bottom-right
> (1a)

Width(#8) = | G(i)
bottom-right

− G
(i)

top-left
| (1b)

Height(#8) = | ~(i)
bottom-right

− ~
(i)

top-left
| (1c)

Area(#8) = | G(i)
bottom-right

− G
(i)

top-left
| ∗ | ~(i)

bottom-right
− ~

(i)

top-left
| (1d)

3.1.2 Binary Indicator Functions. We also de�ne four indicator functions, XLeft(. , .), XRight(. , .), XAbove(. , .),
and XBelow(. , .) below, to test the relative position of any two nodes: #8 and # 9 . For example, in Figure 2, #4

is on the left of #5. Therefore, XLeft(#4, #5) will return 1 ()'*�), whereas XRight(#4, #5) will return 0 (��!(�).
Conversely, XLeft(#5, #5) will return 0, but XRight(#5, #4) will be 1.

XLeft(#8 , # 9) =

{
1 if G

(i)

bottom-right
≤ G

(j)

top-left

0 otherwise
(2a)

XRight(#8 , # 9) =

{
1 if G

(i)

top-left
≥ G

(j)

bottom-right

0 otherwise
(2b)

XAbove(#8 , # 9) =

{
1 if ~

(i)

bottom-right
≤ ~

(j)

top-left

0 otherwise
(2c)

XBelow(#8 , # 9) =

{
1 if ~

(i)

top-left
≥ ~

(j)

bottom-right

0 otherwise
(2d)

3.1.3 Parent Indicator Function. Finally, we de�ne a parent function, Parent(#8 , # 9 ), and the cost function,
Cost(#8 ). Parent(#8 , # 9 ) returns 1 if node #8 is the parent of node # 9 , or returns 0.

Parent(#8, # 9) =





0 if 8 = 9

1 if G
(i)

top-left
≤ G

(j)

top-left
& ~

(i)

top-left
≥ ~

(j)

top-left
&

G
(i)

bottom-right
≥ G

(j)

bottom-right
& ~

(i)

bottom-right
≤ ~

(j)

bottom-right

0 otherwise

(3)

3.1.4 Cost Function. Cost(#8 ) returns the cost for any node in the DAG. This function is used later in the UI
optimization phase. The goal is to minimize the amount of whitespace inside a node. As such, the cost function is
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de�ned as follows:

Cost(#8) = Area(#8) −

:∑

9=1

[ Area(# 9 ) | 9 ≠ 8 & Parent(#8 , # 9 ) = 1 ] (4)

3.1.5 Defining an App as a Graph. With all of these attributes and functions de�ned, now we can formally
represent our DAG, G = {N,E} as follows:

(1) N = {#1, #2, #3, ......, #: }; considering there are : nodes in the DAG and
(2) E = { (#8 , # 9 ) | 8 = [1, :], 9 = [1, :], & Parent(#8 , # 9 ) = 1}.

3.2 Optimization Parameters and Constraints

3.2.1 Optimization Parameters. We optimize the bounding rectangles (four coordinates for each rectangle) of
all the nodes in G. Our optimization engine changes the values of these parameters (i.e., places the nodes in
di�erent places) following the predetermined constraints (described next) to �nd the combination that minimizes
the whitespace. Thus, if G has = nodes, we need to optimize 4 ∗ = parameters. Mathematically, we can write the
set of parameters as follows:

Params = {Coord(#8 ) | 8 = [1, :]} (5)

Next, we describe a set of constraints (i.e., conditions) that the optimizer must respect.

3.2.2 Constraint: Relative Positions of the UI Objects. Users expect no signi�cant changes regarding the layout of
a website or an interface before and after modifying a UI [22, 76]. The UI items’ colors and relative positions
should stay the same to maintain a speci�c layout. For example, node #3 is below #2 in Figure 2. Hence, one
should not reorganize the UI in a way that places #3 above #2. Moreover, the light blue colors of the nodes #4,
#5, and #6 should also remain the same after adaptation. We detect the relative positions of the items from their
coordinates in the original UI, using Equations 2a, 2b, 2c, and 2d.

Note that for a pair of nodes, (#8 , # 9 ), one of Equations 2a or 2b and one of Equations 2c or 2d can return true
at the same time. In other words, an item can be on the left/right and above/below another. In such cases, both
restrictions are enforced. To summarize, if #8 and # 9 are two nodes in an original UI, and #

′

8 and #
′

9 are their

transformed versions in the optimized UI, then all of the following conditions must be satis�ed:

XLeft (#8 , # 9 ) = XLeft (#
′

8 , #
′

9 ), XRight (#8 , # 9 ) = XRight (#
′

8 , #
′

9 )

XAbove (#8 , # 9 ) = XAbove (#
′

8 , #
′

9 ), XBelow (#8 , # 9 ) = XBelow (#
′

8 , #
′

9 )
(6)

3.2.3 Constraint: Parent-Child relationships. The parent-child relationships must be satis�ed as well when
performing the optimization. For example, nodes #4 and #5 are children of node #2 in Figure 2. After optimization,
these parent-child relationships should not change. Thus, the set of edges (E) in the DAG, which denotes all the
parent-child relationships, should remain the same before and after optimization. Let us say that E and E

′
denote

the sets of edges in the DAGs for the original and optimized UIs, respectively.

E = E
′

i.e.,

∀8, 9 if Parent(#8 , # 9 ) = 1, then Parent(#
′

8 , #
′

9 ) = 1 and

∀8, 9 if Parent(#8 , # 9 ) ≠ 1, then Parent(#
′

8 , #
′

9 ) ≠ 1

(7)

Here #8 and # 9 are two nodes in the original UI, and #
′

8 and #
′

9 are the same two nodes in the optimal UI.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 59. Publication date: June 2023.



Space-Mag: An Automatic, Scalable, and Rapid Space Compactor for Optimizing Smartphone App Interfaces... 59:9

3.2.4 Constraint: Not Resizing Children When Optimizing a Parent. Space-Mag’s optimization works in a bottom-
up fashion for the UI hierarchy (§3.3.3). Hence, when optimizing a parent node, its children should already be
in the optimal state. As such, the children will not be resized—they will only be moved around to see if their
displacement can result in better space optimizations for the parent. In summary, when optimizing a node #8 ,

∀# 9 if Parent(#8 , # 9 ) = 1, then,

Width(# 9 ) = Width(#
′

9 ) and

Height(# 9 ) = Height(#
′

9 )

(8)

3.2.5 Other Constraints. Other constraints include retaining the original UI alignment (if any), not allowing a
child to go outside its parent’s bounding rectangle, ensuring that coordinates do not assume negative values, and
requiring a parent node’s area to be greater than or equal to the sum of its children’s areas, among others.

3.3 Space-Mag’s Implementation

3.3.1 Optimization Engine. Since our cost function (Eq 4) represents a 2D quantity, the total area of whitespace,
we used a non-linear optimization engine, GEKKO module [6]. This engine is built on Interior Point (IPOPT) [78]
solver and specializes in dynamic optimization of non-linear, mixed-integer problems [20]. Moreover, GEKKO’s
implementation allowed us to easily incorporate the parameters (as Variables), constraints (as Equations), and
cost function (as Minimize or Maximize method) into the model.

3.3.2 Input and Output. The primary input and output of our current implementation is the meta-representation
of UI elements (i.e., View Tree); we take the original meta-representation and produce its optimized version. For
demonstration, we also take a screenshot as the second input and output its space-optimized version. We sample
input meta-representation and screenshots from the RICO-SCA dataset [7]. Note that our implementation is a
reasonable approximation of the real-world scenario; if Space-Mag is implemented in the Operating System (OS),
we can update the View Tree and send it back to the View System, which then displays the space-compacted
content on screen via the rendering pipeline. We elaborate more in Section 8.1.3.

3.3.3 Optimization Process. We apply a bottom-up optimization in the given UI hierarchy. First, we optimize each
node before getting to its parent. We consider the DAG a tree to identify the node traversal order and apply a post-
order traversal. For example, the traversal order for the UI in Figures 2 and 3would be {#4, #5, # 2, #6, #3, #1}. Note
that the orders {#6, #3, #4, #5, # 2, #1} and {#4, #5, #6, #2, #3, #1} are also valid. GEKKO engine then optimizes
each node based on its parameters and constraints (described in Equation 5 and Section 3.2). Appendix A provides
a step-by-step demonstration of how Space-Mag works with a toy applicatoin.

3.3.4 Generating Output Images. Since we generate an image output for demonstration, wematch the background
color of the output image with the input screenshot. We detect the background color in the input image by
�nding the dominant color. Then, we create a blank image with this background. We also extract the individual
UI items (i.e., leaves) using the original meta-representation. Once all optimization is complete, we render the
previously extracted UI items according to the optimized meta-representation. Finally, we resize the optimized
UI back to its original dimension. This process is shown in Figure 4(b)-(c). Compared to the original Figure 4(a),
the optimized Figure 4(c) is magni�ed ≈ 1.6G by default. We update the output meta-representation accordingly
to re�ect this resizing.

3.3.5 Border Generation and Output. From our prior experience working with low-vision users, we understood
that a rectangular border (preferably of bright color) drawn around a target UI object makes it easier for them to
locate it. We used the red color for this demonstration to draw these borders. In addition, the widths of these
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(d) Space-optimized UI

(with borders)

Fig. 4. Resizing and border generation phases during Space-Mag’s optimization.

borders depend on the dimension of the object it is being drawn around (i.e., a larger object would have thicker
borders). The colors and widths of these borders are customizable. An optimal, resized, and object-bordered UI is
shown in Figure 4(d). Figures 4(a)-(d) demonstrates how a UI looks before and after Space-Mag optimizes its
meta-representation.

4 CONSUMING SPACE-MAG: A SIMPLE SCREEN MAGNIFIER

We also implemented a simple screen magni�er that allows low-vision users to zoom and pan a screenshot image
(original or optimized) in three modes: fullscreen, window, and �sheye.

4.1 Fullscreen Mode

The fullscreen mode re�ects the traditional pan-and-zoom approach utilized by magni�cation tools, such as
ZoomText [14]. This mode is supported by most magni�cation tools available across di�erent Operating Systems,
making it the most widely used mode among low-vision users. The primary advantages of the fullscreen mode are
convenience and popularity. The main disadvantage is its uniform magni�cation technique—where less helpful
content, such as whitespace, is magni�ed just like more valuable content, such as buttons and texts. This often
results in a loss of context and requires extensive panning.

4.2 Window Mode

Windowmode works like a magnifying glass (Figure 5a). The name is inspired by the rectangular-shaped viewport
it uses. The contents inside the viewport are magni�ed uniformly, and anything outside is left as-is. This mode
boasts all the advantages of a typical (focus + context)-based magni�cation technique. It allows users to be
aware of the context (i.e., content outside the viewport). However, this mode can cause occlusion of the contents
close to the viewport when the applied magni�cation scale is high.
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(a) Window Mode (b) Fisheye (Circular) (c) Fisheye (Oval) (d) Fisheye (Rect.)

Fig. 5. Outputs when zooming into a specific portion of a UI using window mode (a), and fisheye mode using di�erent lens
shapes (b-d). Notice that the distorted area in the rectangular (d) and oval (c) lens shapes are less than the circular (b) one.

4.3 Fisheye Mode

Fisheye mode is another example of (focus + context)-based magni�cation. The mode applies a non-uniform
magni�cation to the contents inside the lens (i.e., the circular viewport), magnifying contents closer to the
lens center and distorting contents that are further away. The level of magni�cation/distortion is controlled
using a distortion function. Among many implementations of this distortion function, we used the Sarkar-Brown
method [69]. We believed allowing low-vision users to change the level of distortion during a task could be
distracting (and maybe tiring) to their eyes. As such, we decided to change the lens size whenever the user
changed the magni�cation level using the two mouse buttons (see Table 1). This action made ensures that the
distortion remained consistent throughout. Although a circle is the most common Fisheye lense, we implemented
two additional lens shapes: an oval, as shown in Figure 5(c); and a rectangle, as shown in Figure 5(d). Compared
to the circular lens, the latter two distort less area.

4.4 Supported Gestures and Shortcuts

Our prototype screen magni�er supports limited keyboard commands and mouse interaction (Table 1). These
include zooming in/out, panning, and changing the size of the magni�cation viewport.

5 EVALUATION OF SPACE-MAG

To understand the usability of Space-Mag-optimized UIs in speci�c tasks (e.g., generating the overview of an
image, locating a target) alongside magni�cation tools, we conducted an IRB-approved user study.

5.1 Participants

We recruited 11 low-vision participants (six males and �ve females) through participants’ mailing lists, university
mailing lists, and posts on public forums. The average age of the participants was 36.18 (min 21, max 59, SD
10.65). Our inclusion criteria were users with low vision who used screen magni�cation tools (e.g., ZoomText [14],
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Table 1. Mouse/Keyboard mappings of di�erent actions in the prototype.

Mouse/Keyboard Input
Function

Fullscreen Mode Window Mode Fisheye Mode

Left Mouse Buttom Zoom In Zoom In Zoom In and

Increase Lens Size

Right Mouse Button Zoom Out Zoom Out Zoom Out and

Decrease Lens Size

Mouse Movement Pan Pan Pan

Space button - Change Window Size Change Lens Shape

Table 2. Participants’ demographics, medical condition, preferred magnifiers, and self-reported preferred magnification
levels. FOV: Field of vision, ZT: ZoomText, ZT-F: ZoomText Fusion, WM: Windows Magnifier, i-ZM: iOS Zoom, M-ZM:
MacOS Zoom, A-ZM: Android Zoom.

ID
Age/

Sex

Medical

Condition
Visual Acuity Profession Magnifiers

Magnifi-

cation

P1 33/F
Ocular Albinism,

Photophobia

L: 20/200

R: 20/200
Non-Pro�t Association WM, ZT, ZT-F 300%-350%

P2 29/F Pseudotumor Cerebri Unknown Unemployed WM 600%-700%

P3 59/M
Leber Hereditary

Optic Neuropathy

L: 20/500

R: 20/500
Retired WM, ZT, ZT-F 400%-450%

P4 35/F
Idiopathic Intracranial

Hypertension

L: 20/200

R: Unknown

Employed (on Medical

Disability)
WM, ZT 200%-300%

P5 37/F
Underdeveloped Optic

Nerve

L: 20/400

R: 20/400

Independent living

Instructor for senior
ZT-F, i-ZM 250%-350%

P6 35/F Diabetic Retinopathy L:20/200; R: 20/200 Data Dispatcher ZT, i-ZM 150%-200%

P7 33/M Pseudotumor Cerebri Unknown Professor (Ph.D.) ZT, i-ZM 600%-700%

P8 38/M Aphakia Both: 5/400, 10° FOV Digital Marketing WM, ZT, A-ZM 250%-300%

P9 27/M Pathological Myopia Unknown Graduate Student WM, i-ZM 200%

P10 51/M Congenital Cataracts
L: 20/200

R: 20/400

Occupational Therapy

Assistant
ZT, WM, M-ZM 300%-400%

P11 21/M Pathological Myopia Unknown Unemployed WM, i-ZM 175%-200%

iOS Accessibility Zoom [3]). The details (e.g., eye condition, profession, preferred magni�ers) regarding the
study participants are available in Table 2. All participants lived in the eastern states of the USA (e.g., Virginia,
Pennsylvania, and New York).

5.2 Study Design

We used a within-subject design—all of our participants performed the following two tasks:

5.2.1 Task 1 (T1) : Overview Task. Since using a smartphone typically involves looking at the screen to interpret
its contents, this task asked participants to look at a given screen and report its layout, possible purpose, and
the objects of interest. Objects of interest included text �elds, generic buttons, icons, click-on options, and scroll
buttons, among others. For instance, in Figure 6(a), participants could report that it had a list-like layout. Similarly,
in Figure 6(b), they could report that it was a Login page with 7 objects: {‘LOGIN section header’, ‘E-mail

text field’, ‘Password text field’, ‘NEW HERE? section header’, ‘SIGN UP WITH option’, ‘E-MAIL button’,
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‘FACEBOOK button’}. Completion time for a task was later normalized using the number of objects a participant
managed to report.

5.2.2 Task 2 (T2) : Target Locating Task. This task asked the participant to �nd a speci�c target UI (e.g., a button,
a heading, an icon) on the screen. We provided textual and graphical (if any) descriptions of the target. One
example would be asking a participant to read out the number in the captcha (e.g., 94101) in Figure 5(a). We also
normalized the completion times in T2 using the number of total objects of interest in the UI.

Table 3. An overview of di�erent study conditions for each task.

Serial Screen Type Magnification Mode Study Condition

1 Original Fullscreen �0.0

2 Space-Mag’s output Fullscreen �1.0

3 Original Window �0.1

4 Space-Mag’s output Window �1.1

5 Original Fisheye �0.2

6 Space-Mag’s output Fisheye �1.2

5.2.3 Study Conditions and Task Block. With two types of screens (original, Space-Mag’s output) and three
magni�cation modes (fullscreen, window, �sheye), we have six study conditions in total, as shown in Table 3. We
assign a code for each study condition in the form of �- .. , where - denotes the screen type, and . denotes the
magni�cation mode. - = 0 means original screen (unoptimized UI) and - = 1 means Space-Mag’s output screen
(optimized UI). On the other hand, . = 0 means Fullscreen magni�cation mode, . = 1 means Window mode, and
. = 2 means Fisheye mode. While comparing the original UIs and Space-Mag-optimized UIs is the main focus of
the study, we also wished to observe how the choice of magni�cation modes impacts the performance of our
participants. Each task had three trials. In total, we recorded 6 ∗ 2 ∗ 3 = 36 data points for each participant. The
task ordering and the study conditions were counterbalanced among participants.

5.2.4 Choice of UIs for Di�erent Tasks. We chose Android screens (i.e., images) from the RICO-SCA [7] dataset
to conduct our study. We picked the unmodi�ed RICO-SCA images for representing the original UIs (i.e., study
conditions �0.0, �0.1, and �0.2). On the other hand, we picked the outputs of Space-Mag (input images also
came from the RICO-SCA dataset) for representing study conditions �1.0, �1.1, �1.2. To maintain consistency, we
imposed some constraints while choosing UIs (i.e., images) for di�erent tasks. For a speci�c magni�cation mode
(one of fullscreen, window, or �sheye) and task (either T1 or T2), the two chosen images (one for original UI, the
other for optimized UI) must have a similar layout (e,g, list, grid). We focused primarily on List and Grid layouts
because i) they are the two major categories supported by Android layout design [40], and ii) the RICO-SCA
(or, RICO in general) dataset consists of images (screenshots) from Android smartphones. Further, both screens
should have the same or very close number of objects of interest (at most a di�erence of 3) in the UI. Figure 6
shows two sample screens used in the study.

5.3 Study Procedure

5.3.1 Setup. We conducted the study remotely using Zoom telecommunication software [10]. The feasibility of
an in-person study was questionable, given the sudden uprise of COVID-19 during that time. All the necessary
programs, e.g., the image viewer, Google Chrome browser (for NASA-TLX questionnaire), and Space-Mag itself,
ran on our test laptop computer, on Ubuntu 22.04.1. The computer was a Dell XPS 9700 with an 8-core CPU (Core
i7 10875H) and 32 Gigabytes of RAM. The laptop had a 17-inch screen with a resolution of 1920 * 1200.
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(a) A UI for study condition �0.0 (b) A UI for study condition �1.0

Fig. 6. Two sample screenshots used in the study: an original UI (le�) and Space-Mag’s output (right). Both screens have a
similar layout (List) and have a comparable number of objects of interest in the UI (9 on the le�, 7 on the right).

We gave the participants remote control access (via Zoom [10]) to make sure that they can pan, zoom, and move
the cursor as they feel necessary in our test machine. We asked the participants to turn o� any local magni�ers
(e.g., ZoomText, MacOS Accessibility Zoom) they could have been using. Two researchers were present in each
study session. While one gave necessary instructions to the participant and conducted the study, the other took
notes and timings for di�erent tasks.

5.3.2 �estionnaires and Familiarizing with Space-Mag. We started each study session by asking the participant
demographic questions (e.g., age group, occupation, medical condition of the eye, preferred magni�cation tools,
preferred zoom level). Afterward, we asked about their accommodation preferences, such as light/dark modes,
colored texts, and font faces. We continued by asking about their experience with di�erent magni�cation modes
(e.g., fullscreen, window). Then, we described the �sheye lens, as it was unfamiliar to most participants.

After this initial QA session, we showed the participant two UIs side-by-side (as shown in Figure 8). On the
left was an original UI, while on the right, we showed the output of Space-Mag for the exact UI. We asked the
participant for their reaction to the two UIs. In addition to space reduction, we also asked about the red borders’
role (if any) in improving the visibility of UI content.

Next, we introduced the participant to our screen magni�er prototype. We demonstrated how they could use
the three magni�cation modes. Then, the participant played around with di�erent magni�cation modes (i.e.,
fullscreen, window, �sheye) and their operations (e.g., panning, zooming in and out, changing lens shape and
size). When the participant felt comfortable using the prototype, we moved on to the next section of the study.
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5.3.3 Procedure in T1. First, we described what a participant has to achieve in task T1 (§5.2.1). Apart from
identifying the objects of interest, we also asked the participant to report the layout and probable purpose of the
page. All of these factors were considered when normalizing (§5.5) the completion times during data analysis.
We also allowed the participant to move on from a trial if they felt it was too hard for them. In such a case, we
marked the trial as incomplete and excluded it from the analysis. If the participant needed help remembering the
button/functions for a particular mode of magni�cation, we provided instant help.

5.3.4 Procedure in T2. For the target �nding task (T2), we described that the participant had to �nd a speci�c
target on the screen. We provided an extensive description for the target—textual and graphical, if available. We
asked the participant to stop moving their cursor and give verbal con�rmation to us when they felt they had
found the target. If the participant was correct, we marked the task as complete and took down the timings. If the
participant was wrong, we requested the participant to keep looking.
The di�culty in locating a target in a UI with hundreds of potential targets, when compared to a UI with

only a few, is considerably di�erent, both intuitively and from our experience in prior studies. As such, we also
normalized the completion times in T2 using the number of objects of interest in a UI.

5.3.5 Mid-study and Post-study�estionnaires. After the participant was done with the �rst task (either T1 or T2,
due to counterbalancing), we asked them about their overall experience, challenges, and recommendations. We
also asked them to rate the three magni�cation modes according to their preference. We concluded the mid-study
questionnaire by asking if they had observed any notable di�erence between the original UI and Space-Mag’s
outputs. After the participant �nished the second task, we asked them to rate the three modes again. In case they
had a di�erent order of preference before, and after the second task, we asked for possible explanations.

5.3.6 SUS and NASA-TLX evaluations. After a participant completed the 36 trials of T1 and T2, we asked them
to rate the usability of Space-Mag’s output UIs using di�erent magni�cation modes. We performed the �rst
evaluation using the SUS questionnaire [23]—a set of ten Likert scale statements. For each statement, the
participant rated their agreement/disagreement on a scale of 1-5, with 1 meaning strongly disagree and 5
meaning strongly agree. We also calculated the NASA-TLX load indices [44] for Space-Mag’s output UIs’
usability for three magni�cation modes.

Each study session lasted around 2 hours, and we allowed the participant to take breaks whenever needed. We
compensated each participant with a 50$ Amazon gift card.

5.4 Data Collection and Analysis

As the participants performed the tasks speci�ed by the researcher conducting the study, their actions were
recorded via Zoom’s video recording and an internal logger to enable future data analysis. Our primary goal
was to discover if there is any signi�cant di�erence in participants’ performance when working in original and
Space-Mag’s output UIs.

We also analyzed the participants’ data by creating di�erent UI characteristic-based (e.g., layout, action, target
type) subdivisions. Moreover, we followed recommendations for qualitative interview design [77]. Figure 7 shows
examples of di�erent UI layouts and prominent actions within the UI. We classi�ed a UI as a Grid layout if the
items were distributed in more than one column (e.g., Figure 7c-d). Otherwise, it was marked as a List layout
(e.g., Figure 7a-b).

On the other hand, if a UI was predominantly comprised of text inputs, it was marked as a Write-prominent
UI (e.g., Figure 7b, 7d). Otherwise, it was considered a Read-prominent UI (e.g., Figure 7a, 7c). Note that these
classi�cations were not known to the participants but were created by us after the study in the data analysis
phase. Each participant performed exactly 36 tasks as discussed in Section 5.2.3.
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(a) List layout,

Read Prominent UI

(b) List layout,

Write Prominent UI

(c) Grid layout,

Read Prominent UI

(d) Grid layout,

Write Prominent UI

Fig. 7. Examples showing di�erent UI layouts (list/grid) and prominent UI actions (read/write). Notice that a UI can have
two di�erent classifications at the same time, i.e., it can have a ‘grid’ layout and ‘write’ as its prominent action (d). Moreover,
a target such as “the flag of Spain” (c) is considered of type text+graphics, while a target like “Select language” option (c) is
considered of type text.

5.5 Data Normalization

We normalized the completion times in T1 by dividing the time by the total number of objects of interest (§5.2.1)
a participant managed to report. In T2, we divided the time by the number of the real object of interest in
a UI. We found the completion times in our study to be not normally distributed via Shapiro-Wilk tests. As
such, we ran a Wilcoxon Signed-Rank test when comparing two groups (e.g., completion times in original vs.
Space-Mag’s output UIs ) and a Kruskal-Wallis test when comparing more than two (e.g., completion times using
three magni�cation modes).

6 FINDINGS

In this section, we �rst present a quantitative comparison of Space-Mag’s output and original UIs, including
study participants’ task completion times, SUS, and NASA-TLX scores. Then, we discuss their strategies and
preferences when performing the study tasks (i.e., T1 and T2). Finally, we point out the additional magni�cation
features they most commonly asked for.

6.1 Comparison of Space-Mag’s Output with Original UIs

6.1.1 Participants’ Opinions On Space-Mag’s Outputs. When presented with the side-by-side view of an original
UI (e.g., Figure 8a) and Space-Mag output of the same UI (e.g., Figure 8b), all of our participants preferred the UI
in Figure 8b. In addition, all the participants could notice the larger UI contents in Figure 8b. 4 (P4, P5, P9, P11) of
our 11 participants found Figure 8b’s contents large enough to read/understand without using any magni�cation
tool. In the words of P5:
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(a) (b) (c) (d)

Fig. 8. Original android screens from the RICO-SCA dataset (a and c) and Space-Mag’s output screens (b and d).

“I feel like I don’t have to zoom as much for the one on the right.”

The general tone regarding Space-Mag-generated UIs was predominantly positive. In the words of P1:

“The one on the right (Space-Mag’s output) is exactly what a mobile app should look like. ”

6.1.2 Task Completion Times for T1 and T2. Normalized completion times in tasks T1 and T2 are shown in
Figure 9a and 9b, respectively, for all six conditions as discussed in Table 3.
We subdivided the results based on the magni�cation mode used for a task. For both tasks, the normalized

completion times in each magni�cation mode improved signi�cantly from an original UI to Space-Mag’s output
UIs.
We also compared the normalized completion times among the three magni�cation modes. Apart from

Space-Mag’s output UIs in T2, we found no statistically signi�cant di�erence when using the three magni�cation
modes. The summary of the statistical tests is shown in Table 4.

Combining all the magni�cation modes, we see a 28.13% and 42.89% decrease in normalized completion times
for T1 and T2, respectively, when using Space-Mag’s output UIs compared to original UIs. In summary, while the
magni�cation mode may not always impact the completion time, the type of UI used (e.g., original, Space-Mag’s
output) does.

6.1.3 Task Completion times in Di�erent UI Layouts. Figures 10a and 10b show the normalized task completion
times in T1 and T2, respectively, with the UIs separated based on their layouts (e.g., list, grid).

For Figure 10a, the performance di�erence of original UIs in the two layouts is not substantial. However, this
di�erence is very noticeable with the optimized UIs. We believe this happened because of the red borders drawn
in the optimized UIs. According to P9 and P11, the borders in grid layouts are more helpful than in the list layouts.

We also notice a more substantial performance improvement between the two types of UIs in the grid layout.
This is because the grid layout usually has a well-de�ned alignment of rows and columns. As such, this is
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Fig. 9. Box-plots showing normalized task completion times for participants in T1 and T2 (lower is be�er). ***, **, and *

represents a statistically significant di�erence with p<0.001, p<0.01, and p<0.05 respectively; while NSmeans no statistically
significant di�erence. Detailed statistical test results are available in Table 4.

Table 4. Summary of the statistical tests in T1 and T2. ***, **, and * represents a statistically significant di�erence with
p<0.001, p<0.01, and p<0.05 respectively; while NS means no statistically significant di�erence. The Wilcoxon Signed-Rank
tests were two-tailed and the Kruskal-Wallis tests were right-tailed. U was 0.05 in all cases.

Comparison Test Result: Result:

Study Conditions Used (T1) (T2)

Original vs. Space-optimized UI
(Fullscreen Mode)

Wilcoxon
Signed-Rank

∗ ∗ ∗ (p = 0.00069,
Z = 3.40)

∗∗ (p = 0.000015,
Z = 4.32)

Original vs. Space-optimized UI
(Window Mode)

Wilcoxon
Signed-Rank

∗∗ (p = 0.0034,
Z = 2.93)

∗∗ (p = 0.0021,
Z = 3.077)

Original vs. Space-optimized UI
(Fisheye Mode)

Wilcoxon
Signed-Rank

∗ ∗ ∗ (p = 0.000024,
Z = 4.23)

∗ ∗ ∗ (p = 0.0017,
Z = 3.14)

Fullscreen vs. Window vs. Fisheye Mode
(Original UI)

Kruskal-Wallis NS (j2 = 0.016092,
p = 0.992)

NS (j2 = 3.946,
p = 0.139)

Fullscreen vs. Window vs. Fisheye Mode
(Space-optimized UI)

Kruskal-Wallis NS (j2 = 0.4165,
p = 0.812)

∗ (j2 = 9.0159,
p = 0.01102)

maintained after the optimization. List layouts, on the other hand, lack well-de�ned alignments. Thus, the
improvements in this layout going from original UIs to optimized UIs are minor.
For Figure 10b (i.e., T2), most �ndings of T1 remain true. In addition, we see a performance di�erence in the

list layout with original and optimized UIs.

6.1.4 Task Completion Times Based on Prominent UI Action. Figures 11a and 11b show the normalized task
completion times in T1 and T2, respectively, with the UIs separated by their prominent action (e.g., read, write).
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Fig. 10. Normalized task completion times in T1 (le�) and T2 (right) based on the UI layout (e.g., list and grid). Lower is
be�er. Layout classification process is discussed in Section 5.4.
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Fig. 11. Normalized task completion times in T1 (le�) and T2 (right) based on the prominent UI operation (e.g., read and
write). Lower is be�er. Prominent action classification process is discussed in Section 5.4.

In both �gures, we see drastic improvements from original UIs to optimized UIs when working on ‘write’ action-
based UIs. Generally speaking, ‘write’ action-based UIs usually have more space (examples are Figures 6a, 6b). As
such, Space-Mag has more room to optimize. On the other hand, read action-based UIs are usually packed with
contents, leaving little whitespace in between (examples are Figures 8c, 8d). Thus, Space-Mag cannot improve
the performance by a similar margin.

6.1.5 SUS Scores. Using the SUS questionnaire [71], we gathered feedback from our participants regarding the
usability of Space-Mag’s output UIs with di�erent magni�cation modes. The average score was 84.55, with
an SD of 7.57. While we did not measure the usability of a baseline system (i.e., original UI with fullscreen
magni�cation), we can get those data from previous studies. Momotaz et al. [55] reported the SUS score of such a
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baseline magni�er to be 50.15 (SD 23.42). As such, Space-Mag outperforms the baseline by a signi�cant margin.
Our SUS score of 84.55 has a percentile of more than 96 and attains the adjective “Best Imaginable” according
to SUS scale interpretations [71]. Our participants predominantly hailed the usability of Space-Mag. P3 and P4
appreciated the basic controls and convenient design of the prototype. P1 expressed a wish encompassing all
magni�ers:

“I wish all magni�ers had this many options (of di�erent magni�cation modes and lens shapes).”

P3was also very excited about the possible public deployment of Space-Mag and believed it would new dimensions
to how LV people use di�erent UIs.

6.1.6 NASA-TLX Load Indices. Figure 15 shows the NASA-TLX load indices when using Space-Mag’s outputs
with di�erent magni�cation modes. Fullscreen (mean 62.26, SD 11.46), window (mean 42.18, SD 11.97), and
�sheye (mean 58.55, SD 25.44) modes scored lower (i.e., better) than a baseline magni�cation on original UIs
(mean 66.31 as reported by Mototaz et al. [55]).

We found a statistically signi�cant di�erence (p = 0.0098, Z = 2.58) between the fullscreen and window mode;
and between the window and �sheye mode (p = 0.026, Z = -2.22). However, there was no signi�cant di�erence
between the fullscreen and �sheye mode (p = 0.7, Z = 0.39). A Wilcoxon Signed-Rank test (two-tailed, U = 0.05)
was used in all three cases.

We discovered that frustration (mean 5.82, SD 2.14) was the most prominent factor in the high load indices of
the fullscreen mode. This discovery is backed up by our general �ndings, as participants reported losing context
and requiring to pan more in this mode. On the other hand, physical demand (mean 5.82, SD 2.82) was the main
contributing factor to the �sheye mode’s high score. This phenomenon is backed up by our study �ndings, as
participants reported moving closer to the screen to understand heavily distorted content.
The overall score for the �sheye mode varied quite dramatically (min 18, max 98.67). Some participants (P4,

P5) found the mode helpful, especially in T2. Consequently, they rated the mode to be less demanding. On the
other hand, participants who sat closer to the display by default (§6.2.6), or had a medical condition that made
distortions more distracting (P2, P3, P7, P8, P10), rated �sheye mode as very demanding.

6.2 Strategies and Preferences of Low-vision Users in Study Tasks

6.2.1 Navigation Strategy of Low-vision Users. We observed how our study participants searched the UIs for the
overview task, T1, and the target-locating task, T2. For T1, almost all the participants (except P2 and P8) deployed
a linear-like search strategy. In other words, they went through the contents in a left-to-right, top-to-bottom
fashion. We noticed that they spent more time on text content when compared to graphical ones. When asked
about this behavior, P3 said:

“I cannot seem to get the whole current word in my view (with my current level of magni�cation of
around 500%). Thus, it takes more time to read texts.”

P2 and P8, on the other hand, seemed to deploy a random peek-and-zoom strategy for T1. They tried to zoom
into contrast-rich graphical items (e.g., buttons and images) at random and then guessed the purpose of the UI.
However, we noticed that this often resulted in the participants missing out on critical objects of interest in
the UI. For example, we included a baby’s health progression application UI (consisting of metrics such as head
size, weight, and height, among others) in T1. However, the word “baby” was not mentioned anywhere in the
UI. There was only a tiny icon at the top showing a mother holding a baby. P2 and P8 missed out on reporting
this information with their random peek-and-zoom search. Participants who deployed the former strategy (i.e.,
linear-like) were mostly able to report this information.
For task T2, the strategy for all participants was the same—zoom into likely targets based on the target

description; if the zoomed-in object is not the target, move on to the next one. Unsurprisingly, the choice of the
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next one was mainly based on its proximity to the current one. While some participants (P2, P4-P6, P8, P9-P11)
relied more on the graphical description of the target (if available), others (P1, P3, P7) found the textual and
graphical descriptions equally important. We also noticed that our participants took less time with targets that
had both graphical and textual cues when compared to targets with only texts. Figure 12 demonstrates this
�nding. Figure 12 also displays the general improvement in the participants’ performance when using the UIs
from Space-Mag’s output. One minor exception was the (Graphics+Text) target in Window mode.
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Fig. 12. Normalized task completion times in T2 based on the target types (e.g., Text and [Graphics + Text]). Lower is be�er.
Di�erent target types are demonstrated in Figure 7.

Some participants reported that the space-compacted UIs also impacted their search strategy. According to P1:

“I felt more con�dent navigating the space-optimized UIs as I was less afraid of losing information
(context) on the screen. I also felt that the choice of magni�cation mode (among the three) was not
as important with the space-optimized UIs”

P3 also mentioned that he has to zoom less and can understand the context more easily with the space-optimized
UIs.

6.2.2 Bounding Rectangles Around Objects is Helpful for Low-vision Users. Nine of our eleven participants said
they found the bounding rectangles drawn around the UI objects helpful. According to P6:

“Those (the red borders) are great! ZoomText does this, too (only for the item on focus), but it often
messes up. These borders here are great in helping me to distinguish the objects and make sure I
am not missing anything.”

However, P5 and P10 believed that the borders could sometimes be distracting, especially when there are too
many items on the screen.

6.2.3 Choice of Magnification Mode Depends on the Task at Hand. Almost all of our participants (except P9) were
fullscreen magni�cation users. However, P9 used the window mode (in iOS Accessibility Zoom) predominantly.
Moreover, only three of our participants were familiar with �sheye lenses. Unsurprisingly, when we asked them
to rank the three magni�cation modes at the beginning of the study, ten of the eleven participants picked the
fullscreen mode as their �rst choice (as shown in Figure 13a).
We took votes from the participants about their preferred magni�cation mode twice more—once after they

�nished the �rst task (not necessarily T1), and once when they were done with the second task. We found that
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their rank of preference regarding magni�cation mode varied in each voting session, with window mode getting
more popular and ending up as the preferred �rst choice for most at the end of the study (Figure 13a).
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Fig. 13. Magnification preferences of participants at di�erent stages. Note that the first task is not necessarily T1.

This phenomenon demonstrates that the preferred magni�cation mode for LV users depends on their task at a
particular time. We noticed that our participants (seven out of eleven) predominantly picked the window mode
for reading texts, which is an integral part of the overview task, T1. Except for P4, no one else liked �sheye for
reading texts—stating the distortion as the culprit.

For the target locating task (T2), however, participants were happy to pick either the window or �sheye, saying
that it makes little di�erence. Nevertheless, they still voted for the window mode as their �rst choice. P1 and P7
stuck with their choice of fullscreen mode as their �rst choice throughout the study. Both mentioned convenience
and being more familiar (with fullscreen mode) as the critical factors behind their decisions. We noticed that the
fullscreen mode was most participants’ third choice after the �nal voting session (Figure 13c)

6.2.4 Higher Magnification Does Not Always Guarantee Good Visibility. P2, P4, P8, and P10 pointed out that
higher magni�cation is not always the only factor contributing to good visibility for a UI. P2 mentioned her
struggles in UIs with light backgrounds, irrespective of the size of the UI elements. P4, P8, and P10 also mentioned
their preference for a dark mode in a UI (i.e., light text on dark background). According to P10, the contrast ratio
(higher the better), the choice of color for crucial objects (e.g., buttons, warnings), and the width (e.g., boldface or
no-boldface) of the texts also play essential roles in improving the visibility of the contents in a UI for low-vision
users.

6.2.5 Maintaining Original Aspect Ratio is Important for Text-rich UIs. Four participants (P2, P5, P6, P11) mentioned
that they found the aspect ratio change in Space-Mag’s output discomforting. As the compacted UI was stretched
to match the original shape (Figure 4b- 4c), the texts often became taller and more compact. This action made
them harder to read for some participants. In the words of P5:

“Texts on the right (space-optimized UI) are harder to read because they are closer together. The
alphabets look taller than they usually are.”

6.2.6 Fisheye’s Distortion Bothers Those More Who Sit Closer to Their Displays. Participants who sat very close
to the display (e.g., less than 2 inches or so), found the �sheye’s distortion to be more bothering than those who
sat at a more usual distance. For P2 and P7, this information regarding the sitting distance was self-reported. For
P3, P8, and P10, we noticed the distance from their usage behavior during the study.

6.2.7 Preferred Lens Shape in Fisheye Mode. When using the Fisheye mode, our participants mostly preferred
the rectangular shape. The summary of their choice is shown in Figure 14. They provided diversi�ed rationales
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for their choice. For example, P2 stated that the rectangle would allow more of a word to come into the current
view for her to read. P3 felt that the rectangular-shaped lens created the least distortion among the three shapes
(which is true as shown in Figures 5c and 5d). P6, P8, and P9 mentioned that the rectangular shape made reading
much easier than the other two shapes.
While P6 felt that the oval shape might not be necessary, P3, P4, and P7 felt that the oval shape was a good

middle ground with the circle and the rectangle on the two poles. Most of our participants reported problems
with the circular shape as they felt it created the most distortion and brought more than one line into the view.
However, P11 reported liking the circular shape the most. He felt that the higher distortion (in a circular shape)
made the contents in the lens stand out more—something which P5 also agreed upon.

0

2

4

6

8

10

Circle Oval Rectangle

Lens Shape

P
a

rt
ic

ip
a

n
t 

V
o

te
s

Preferred Lens Shape
 in Fisheye Mode

Fig. 14. Preferred lens shape in Fish-
eyemode as voted by the participants.

**

*

NS

0

25

50

75

100

Fullscreen Window Fisheye

Magnification Mode

N
A

S
A

−
T

L
X

 L
o

a
d

 I
n

d
e
x

(As evaluated in space−optimized UIs)

NASA−TLX Load Indices for 
Different Magnification Modes

Fig. 15. NASA-TLX load indices as evaluated
on Space-Mag’s outputs. Lower is be�er.

6.3 Alternative Feature Requests From Study Participants

6.3.1 Automatic Adaptation of the Magnification Mode, Magnification Amount, and Lens Shape. P6 and P11 sug-
gested that it could be bene�cial for low-vision users if their preferences (e.g., magni�cation mode, magni�cation
amount, lens shape) can be applied to the UI at startup. P11 also suggested automatic adjustment of the lens
shape and magni�cation type based on the current location of the lens (or focus). In his words:

“... another thing you can do is automatically adapt (of the magni�cation mode and lens shape). If
the current item in focus is a graphical item, the �sheye lens with a circular/oval shape would be
great. If we are on texts, switch back to window mode.”

P3 believed automatic magni�cation control and lens size increment in some scenarios could be helpful. For
example, if a low-vision user uses window mode for reading and the current word in focus is too big to �t in the
lens, the system can automatically increase the lens size or reduce the magni�cation level.

6.3.2 Customizable Object Border Width and Color. P1, P5, P10, and P11 wished for customizable colors and
widths for the bounding rectangles around the UI objects. P1 also believed that the use of these borders could be
made optional.
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6.3.3 Faster Panning. As we ran the study remotely using Zoom [10], there was often a minimal delay between
the participants’ actions (e.g., moving the lens, applying magni�cation) and the result of that action taking place
on the screen. As such, they wished for reduced (or zero) delays when panning. Note that this delay was not
noticeable on the local computer; if we could have run an in-person study, it is improbable that the participants
would have noticed any delay.

7 SCALABILITY OF SPACE-MAG

To test the scalability and generalizability of Space-Mag, we ran the framework on the RICO-SCA dataset [7]
consisting of 25, 677 android screens. We successfully ran Space-Mag on 16, 566 of those and generated space-
compacted screens. The unsuccessful cases can be attributed to two possible reasons:

First, the accompanying json �les that come with each screen contained ill-formed metadata information (e.g.,
overlapping objects, incorrect hierarchy).

Second, the optimizer (§3.3.1) failed to �nd a solutionmaintaining all the constraints (a limitation of GEKKO [20]).

7.1 Space Compaction Performance
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Fig. 16. Summary of Space-Mag’s performance on the RICO-SCA [7] dataset. (a) shows the % of space saved in each screen
with respect to the original screen space. (b) shows the runtime of Space-Mag for each screen. In both (a) and (b), the dashed
line in the middle shows the mean.

The space-Compaction summary is shown in Figure 16a. We calculate the percentage of saved space, (saved for

a screen using the equation: (saved =
Area(#>A6 )−Area(#>?C )

Area(#>A6 )
, where #>A6 and #>?C denote the root nodes in the UI

hierarchy DAG in the original UI and the space-optimized UI. On average, we saved around 47.17% space (SD
24.58) for each UI screen in the database. We also noticed that the average space saving due to height reduction
(mean 44.93, SD 23.83) was signi�cantly higher than the space-saving due to width reduction (mean 5.56, SD
12.99). This output is understandable given that the mobile UI screens in the RICO-SCA dataset were already
quite tall, and their widths were considerably smaller than their heights (aspect ratio 9 : 16).

7.2 Runtime

The mean runtime (i.e., time taken by Space-Mag to generate output) for each screen was around 1.44 seconds
(median 1.24, SD 0.83, min 0.21, max 6.06). The machine running the analysis had an 8-core CPU (Intel Core i7)
and 32 Gigabytes of RAM. The runtime summary is shown in Figure 16b.
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8 DISCUSSION

Our �ndings show positive outcomes for low-vision users when using Space-Mag-generated user interfaces
compared to conventional user interfaces. We now discuss the broader impact of Space-Mag and provide design
guidelines for system designers and accessibility practitioners.

8.1 Guidelines for System Designers and Accessibility Practitioners

8.1.1 Operating System-level Integration of Space-Mag. To generate space-compacted UIs, Space-Mag requires
the meta-representation of the UI elements, and this representation is available in any operating system’s graphics
rendering pipeline. As such, Space-Mag can be implemented in di�erent operating systems (OS) such asWindows,
Android, and iOS. Take the Android OS, for example. During the rendering phase of the graphics pipeline in
Android [39], Image Stream Producers (e.g., media Player, camera preview) forward their speci�c window
metadata to theWindow Manager.Window Manager determines the windows’ positions and forwards them to the
SurfaceFlinger—which determines the order (e.g., foreground, background, occlusion) in which contents would
be displayed on the screen. As such, we know that theWindow Manager has the UI screen metadata regarding all
the objects about to appear on the screen. Space-Mag can be added as a routine in theWindow Manager, who
will forward the space-optimized window(s) to the SurfaceFlinger. Speaking from a high level, other operating
systems (e.g., windows, iOS) also use a similar graphics pipeline (with possible implementation and security
di�erences). As such, OS-level integration of Space-Mag is feasible for any operating system.

8.1.2 Working With Space-Mag When UI Meta-representation is Not Available. Recent Computer Vision-based
methods have shown great potential in screen content detection, labeling, and creating hierarchies. Exam-
ples include Screen Recognition [83], Re�ow [80], and Screen Parser [81] for iOS screens; UIED [82] and
Screen2Words [79] for Android screens; and REMAUI [57] for both platforms. Additionally, there is the option
of constructing UI metadata through reverse engineering of the UI pixels, as demonstrated in works such as
Prefab [30, 31] and ScreenCrayons [60]. With these techniques, it is possible to generate the necessary UI metadata
from a screenshot or image of a screen, even when the original metadata is unavailable.

8.1.3 Translating Keyboard and Mouse-based Interactions into Touch-based Interactions. The touch-based interac-
tions used by current smartphone screen magni�ers have some major usability issues, despite being convenient.
The panning and zooming gestures on smartphones are designed by overloading the standard touch gestures,
such as one-�nger touch or tap or drag. To pan, for instance, low-vision users need to drag the magni�ed screen
with 3 �ngers on iOS [3] or with 2 �ngers on Android [2].

Recent work has identi�ed a number of usability issues with these overloaded gestures. First, these gestures
are cumbersome to use [24]; and quickly become tiring due to repeated use [74]. Second, these gestures require
bimanual interaction, i.e., holding the smartphone with one hand while making the gestures with the other
hand. Scenarios when another hand is encumbered [56], screen magni�ers could be challenging to use. Third,
since all smartphone touch gestures involve some subset of �nger combinations, it is easy to mix up one for
the other. Fourth, panning with 3-�nger-dragging is error-prone since not all three �ngers touched the screen
simultaneously [55]. The �nger that touches the screen right before others registers an “unintended” one-�nger
tap event, which accidentally opens a di�erent window. The recovery time from such accidental context switches
varied widely, ranging from 5s to 90s [55].

As a result, any new magni�cation prototype must control several factors during evaluation. For instance,
Momotaz et al. [55] evaluated their prototype by designing a specialized app that controlled (disabled) the
interactivity of onscreen content. Similarly, the test UIs in our study setup were not interactive. Given our
focus was on evaluating the visibility of UI content—as opposed to their interactivity, we believe this was a
reasonable compromise. As for the mode of interaction, we o�ered primitive magni�cation operations through
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mouse- and keyboard-based interactions, which allowed us to facilitate remote study. Contrary to most current
screen magni�ers which o�er uniform magni�cation only, our magni�cation prototype facilitates three modes of
operation (e.g., fullscreen, window, �sheye), serving the varying needs of users. For the aforementioned reasons,
we believe our prototype was reasonable for a controlled lab study; our �ndings can translate to real smartphone
apps and will likely bene�t low-vision users.

8.2 Placement of Space-Mag Within Relevant Literature

8.2.1 Space-Mag as a UI Adaptation Tool. We argue that Space-Mag stands out in the larger body of UI
adaptation tools because of its scalability, performance, platform neutrality, and user independence. To the best
of our knowledge, none of the prior works o�er all the aforementioned attributes at the same time. For instance,
a noteworthy prior work, SUPPLE++ [38], put distinct attention to users with vision and motor disabilities
when adapting UIs. It required user-speci�c information (e.g., visual cue size), was demonstrated on demo apps
developed from scratch with no guidance on how to adapt an existing app, and took a signi�cant amount of
time to optimize a UI (e.g., ≈ 20 minutes in the worst scenario). Space-Mag, on the other hand, requires no
user-speci�c information, can be customized to run on any app with a graphical user interface (Section 8.1.1),
and takes substantially less time (≈ 6 seconds) even in the worst scenario.

8.2.2 Space-Mag as a Platform-agnostic Di�erential Magnification Technique. Exisiting di�erential magni�cation
techniques such as ‘SteeringWheel’ [22], ‘Opportunistic Magni�cation’ [21], and ‘TableView’ [51] are all proposed
for web UIs, where an underlying content representation is readily available as an HTML DOM. Although the
concept of an HTML DOM and a non-web application DOM are similar, their availability and quality di�er
drastically. For instance, the original RICO dataset [29] has around 72: screenshots from 9.7: Android applications,
along with their DOMs. However, Li et al. [52] found major inconsistencies in about 75% of these DOMs, and
created the �ltered RICO-SCA [7] with around 25: screenshots. Unfortunately, we still found noteworthy
inconsistencies (e.g., overlapping objects, incorrect hierarchy, repetition of containers) in the RICO-SCA dataset
(Section 7). As such, �xing accessibility issues (e.g., redundant whitespace) for non-web apps pose a di�erent
challenge compared to web apps. This challenge warrants the need for platform-agnostic di�erential magni�cation
tools. We argue that Space-Mag addresses this need.

8.2.3 Space-Mag as a Supplement for Existing Magnifiers. Popular magni�ers such as ZoomText [14], Windows
Magni�er [9], and iOSAccessibility Zoom [3]mostly use uniform, fullscreenmagni�cation. By reducing redundant,
unnecessary whitespace prior to zooming, Space-Mag makes life easy for these magni�ers, as the users are less
likely to zoom into whitespace and lose context. This is also evident from our study �ndings as the participants
reported not having to zoom as much with their magni�cation tools when using Space-Mag-generated UIs
(Section 6.1.1). As such, we argue that Space-Mag enhances the capabilities of existing magni�ers.

8.3 Limitations and Future Work

Space-Mag has several limitations. First, the framework can change the aspect ratio of the original UI, resulting
from the unequal space savings in horizontal and vertical dimensions (§7). As observed in our study �ndings,
this can make reading text contents di�cult for some low-vision users. In the future, we plan to implement a
non-uniform magni�cation on the resizing step (see Figure 4b- 4c) of Space-Mag’s optimization process. In this
approach, we would aim to maintain the aspect ratios for at least some speci�c types of items (e.g., text and small
icons).

Second, Space-Mag-generated UIs are not always perfect (Appendix B.3). We noticed that Space-Mag struggles
speci�cally when there are modal and pop-up windows in the original screen (Figure 20(i)-(ii)). This is a limitation
of the framework; by de�nition, we did not allow two UI objects to have overlapping coordinates unless they
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had a child-parent relationship. However, modals are temporary UI segments and cannot be integrated into
the original DOM tree. In the future, we plan to extend Space-Mag to support modals and popups. Another
scenario where Space-Mag struggles is input UIs having an image or pattern as background (Figure 20(iii)-(iv)).
As Space-Mag only has access to the static image representation of the given UI, it cannot separate the foreground
from the background (Section 3.3.4). However, in system-level integration, Space-Mag would have access to such
information thanks toWindow Manager in the graphics rendering pipeline. Therefore, this is more of an issue
with the input than the framework.

Third, we did not employ a formal strategy to evaluate the quality of all the Space-Mag-generated UIs. While
the preliminary feedback on the space-optimized UIs was predominantly positive (Section 6.1.1), the UIs used in
the study represents a very small subset of the 16, 566 total UIs. As such, we plan to conduct a perceived quality
study [72] on more of Space-Mag’s outputs in the future.

9 CONCLUSION

In this paper, we proposed Space-Mag, an automatic framework to optimally compact whitespace in the UIs of
mobile applications; to address the cumbersome experience (e.g., having to pan relentlessly, contents getting
out of the viewport) low-vision users face when using di�erent magni�cation tools at high magni�cation. We
tested Space-Mag in a study with 11 low-vision participants using three di�erent magni�cation modes. We
found that when using Space-Mag-optimized UIs compared to original UIs, 11 low-vision participants in our
study performed signi�cantly better on two tasks. We tested the framework’s scalability by running it on the
RICO-SCA [7] dataset, and, on average, managed to save around 47.17% space in each Android screen.

Space-Mag o�ers a set of attributes (i.e., scalability, performance, platform neutrality, and user independence)
that no existing tool o�ers to the best of our knowledge. As such, we believe widespread operating system-
level integration of Space-Mag would enhance low-vision users’ experience irrespective of their preferred
magni�cation tools. We also argue that Space-Mag will pave the way for more research in a similar direction,
such as optimizing a UI hierarchy to save more space, �xing inconsistent alignments, and changing the relative
size of di�erent levels of UI content.
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A STEP-BY-STEP DEMONSTRATION OF SPACE-MAG’S SPACE OPTIMIZATION

In this section, we provide a step-by-step demonstration of how Space-Mag’s space optimization works. Figure 17
demonstrates how a bottom-up space optimization is performed in a sample application UI. Figure 17(a) shows the
original application UI. Figure 17(b) numbers all the objects in the UI and creates a corresponding DAG below. All
nodes’ coordinates (i.e., optimization parameters) are known at this point. The parent-child relationships (i.e., a
model constraint) are also known and shown using the directed edges in the DAG. For example, nodes 11, 12, 13 are
the children of node 5. Other optimization constraints are also detected at this stage. A relative position constraint
example is that node 12 is above 13 but below 11. All such constraints are respected throughout the optimization
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Fig. 17. Di�erent stages in Space-Mag’s optimization. Each stage shows a UI (top) and its relevant DAG (bo�om). Saved
whitespace for a node is shown using an angled-line pa�ern.
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process, from Stage 3 to Stage 8. At this stage, none of the UI objects is space-optimized—thus, the color of their
corresponding nodes in the associated DAG is white. Finally, the DAG’s traversal order for the nodes is determined
using a post-order traversal. The order shown in this example is: {7, 3, 8, 9, 10, 11, 12, 13, 14, 15, 16, 2, 4, 5, 6, 1}.

Stage 3 optimizes all the atomic objects in the UI. Note that most atomic objects in UIs reside in an intermediate
container. While atomic objects can sometimes have the same bounding rectangle as their containers, most of the
time, they do not. This phenomenon is evident in our analysis of the RICO-SCA [7] dataset. Here, we assume
that the atomic objects reside in containers that have larger bounding rectangles. As such, we optimize the space
inside these containers and eliminate them from our consideration. Note that the containers are not shown in the
DAG. As an object gets optimized, the space reduced in the process is shown using an angled-line pattern. The
DAG node corresponding to this UI object is marked in the same pattern.

Stage 4 optimizes the �rst parent node in the DAG (i.e., node 2). Note that after this optimization, the previously
saved space from node 7 and the current saved space from node 2 are merged. Stage 5-7 optimizes nodes 4, 5, and
6, respectively. Finally, stage 8 optimizes node 1 and generates an optimal meta-representation for the UI.

The original UI has a central alignment, which is respected throughout the optimization process. However, a
speci�c alignment is often hard to detect for real-world applications. In such scenarios, Space-Mag applies a
central alignment.

B SPACE-MAG-GENERATED SCREENSHOTS GALLERY

In this section, we present some examples of the Space-Mag-generated UIs, organized in three groups: screenshots
with ample whitespace, screenshots with little whitespace, and failed/partially failed samples.

B.1 Screenshots With Ample Whitespace

(i) (ii) (iii) (iv)

Fig. 18. Space-Mag-generated UIs when input UIs have ample whitespace.
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(v) (vi) (vii) (viii)

(ix) (x) (xi) (xii)

Fig. 18. Space-Mag-generated UIs when input UIs have ample whitespace (contd.). Space-Mag usually works the best
when the input UI has ample space.
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B.2 Screenshots With Li�le Whitespace

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Fig. 19. In compact UIs, Space-Mag has li�le to do. Importantly, the framework does not break because of the complexity of
the UI.
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B.3 Failed/Partially Failed Samples

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)

Fig. 20. Examples where Space-Mag fails to generate a consistent UI as output.
(i)−→(ii): Only the popup is detected and rendered, ignoring the primary UI in the background. Probable Cause: The DOM
contained only the popup’s information.
(iii)−→(iv): The background color/pa�ern is lost in the final rendering. Probable Cause: Space-Mag’s current implementation
cannot separate the foreground from the background (Section 8.3).
(v)−→(vi): Misplacement/overlap of UI objects in the final rendering. Probable Cause: Incorrect DOM information.
(vii)−→(viii): Same issue as (i)−→(ii).

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 7, No. 2, Article 59. Publication date: June 2023.



59:36 Islam and Billah

(ix) (x) (xi) (xii)

Fig. 20. Examples where Space-Mag fails to generate a consistent UI as output (contd.).
(ix)−→(x): Loss of original alignment. Probable Cause: The optimizer (i.e., GEKKO) got stuck in a local minimum.
(xi)−→(xii): Too many red rectangles make the UI look more compact than the original. Probable Cause: Space-Mag draws a
red discernible rectangle around every UI object; sometimes it can be too much.
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