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ABSTRACT
Web browsing has never been easy for blind people, primarily
due to the serial press-and-listen interaction mode of screen read-
ers – their “go-to” assistive technology. Even simple navigational
browsing actions on a page require a multitude of shortcuts. Auto-
suggesting the next browsing action has the potential to assist blind
users in swiftly completing various tasks with minimal effort. Ex-
tant auto-suggest feature in web pages is limited to filling form
fields; in this paper, we generalize it to any web screen-reading
browsing action, e.g., navigation, selection, etc. Towards that, we
introduce SuggestOmatic, a personalized and scalable unsupervised
approach for predicting the most likely next browsing action of the
user, and proactively suggesting it to the user so that the user can
avoid pressing a lot of shortcuts to complete that action.

SuggestOmatic rests on two key ideas. First, it exploits the user’s
Action History to identify and suggest a small set of browsing
actions that will, with high likelihood, contain an action which
the user will want to do next, and the chosen action is executed
automatically. Second, the Action History is represented as an
abstract temporal sequence of operations over semantic web entities
called Logical Segments - a collection of related HTML elements,
e.g., widgets, search results, menus, forms, etc.; this semantics-based
abstract representation of browsing actions in the Action History
makes SuggestOmatic scalable across websites, i.e., actions recorded
in one website can be used to make suggestions for other similar
websites. We also describe an interface that uses an off-the-shelf
physical Dial as an input device that enables SuggestOmatic to work
with any screen reader. The results of a user study with 12 blind
participants indicate that SuggestOmatic can significantly reduce
the browsing task times by as much as 29% when compared with a
hand-crafted macro-based web automation solution.
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1 INTRODUCTION
Blind people interact with applications including web browsers
primarily using screen readers (e.g., NVDA [23], JAWS [17], Dol-
phin [31], Window-Eyes [33], VoiceOver [32], etc.). Screen readers
enable blind users to sequentially navigate webpage content using
keyboard shortcuts, with all content being either narrated using
synthesized voice or converted into refreshable Braille. However,
this serial “press-and-listen” interface of screen readers have been
shown to be inadequate for providing a satisfactory and usable
web-browsing experience for blind users ([12, 18]). Furthermore,
most screen-reader users rely only on a small basic set of sequential
navigation shortcuts [12]. As a consequence, they end up spending
a lot of time in completing even simple day-to-day browsing tasks
such as online shopping, flight reservation, etc.[3, 4].

One approach to overcome these screen-reader issues is to use
web automation that performs browsing tasks on users’ behalf.
To automate browsing tasks, almost all extant web automation
techniques ([8, 19]) typically use macros or scripts, containing pre-
defined or prerecorded sequences of browsing actions. However,
the use of macros makes the current web-automation techniques
unsuitable for ad hoc browsing actions, i.e., tasks where users do
not follow the same fixed sequence of browsing actions every time
they do these tasks. For example, while booking flights online, users
may choose different search-result filters depending on their pref-
erences, go back and search again for flights with different input
dates to get better price deals, compare prices with other similar
travel websites, etc. In other words, there is no fixed sequence of
actions; the users will continue to browse until they find flights that
meet their requirements. In addition to the limitations of macros,
most web-automation techniques require blind users to manually
find and replay macros, and sometimes even create and manage the
macros if personalization is desired. All these problems with extant
automation techniques restrict their utility for blind people; none
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Figure 1: Illustration of auto-suggest as embodied in SuggestOmatic. Upon user request, the “Suggestions” dialog box appears
at the middle of each view. (A) A user opens the homepage of a travel booking site. The “Suggestions” dialog shows available
options the user can choose. The user chooses “Go to menu e.g., Hotels, Cars, Flight ...” option. (B-D) Intermediate steps along
with suggestions at each step towards making a “one-way” flight reservation.

of the 12 blind participants in our user study reported knowing or
using any web automation technology.

Instead of web automation as described above, we envision us-
ing auto-suggest as the means to predict and automate the next
browsing action (e.g., navigate to next search-result item), thereby
assisting blind users in swiftly completing various ad hoc web
browsing tasks with minimal effort. The idea of auto-suggest does
exist for web pages but is limited to filling form fields; in this paper,
we generalize it to any browsing action, e.g., navigation, selection,
etc. Towards that, we introduce SuggestOmatic, a flexible and scal-
able unsupervised approach for predicting the most likely next
browsing action of the user, and proactively suggesting it to the
user so that the user can avoid pressing a lot of shortcuts to com-
plete that action. Figure 1 is an illustration of auto-suggest in action,
as embodied in SuggestOmatic.

The distinguishing characteristics of SuggestOmatic are as fol-
lows: First, instead of using macros, it leverages user’s semantic Ac-
tion History – a temporal sequence of user’s past browsing actions
where each action is represented as an operation (e.g., navigate,
select, fill, etc.) over some Logical Segment (a collection of related
HTML elements such as widgets, search results, menus, forms,
etc.). This semantics-based abstract representation (e.g., navigate
to search results) instead of syntax-based HTML representation
(e.g., move cursor to DOM node abc) enables SuggestOmatic to
use actions recorded on one website to provide suggestions for
other similar websites even if the user never visited those websites.
Second, SuggestOmatic utilizes a custom scoring model, based on
adapting a local sequence alignment algorithm [29] used in bioin-
formatics, to rate the actions in Action History according to their
likelihood of being the next action that the user wants to do in the
context of the user’s most recent browsing actions. The top scoring

actions are then suggested to the users for automation, and Sug-
gestOmatic will execute the chosen browsing action on behalf of
the user. Third, the scoring model is programmed to continuously
and incrementally update the scores of browsing actions in Action
History after every user action, so that the generated suggestions
are kept fresh and not outdated.

We also present a novel interface for SuggestOmatic based on
a separate off-the-shelf physical dial input device that supports
simple rotate and press gestures with audio-haptic feedback using
which users access the various features of SuggestOmatic. More im-
portantly, the dial also makes SuggestOMatic work with any screen
reader. We also report on a user study with 12 blind participants
on the effectiveness and usability of SuggestOmatic.

2 RELATEDWORK
In this section, we review some of the popular web automation
techniques as well as other approaches that improve non-visual
web access.

Traditional web automation approaches typically adopt the fol-
lowing two approaches – handcrafting, e.g., ([11, 22]) and Pro-
gramming by Demonstration (PBD) ([2, 8, 19]). The handcrafting
method involves writing scripts to: (a) customize the behavior of
the browser or screen-reader, or (b) encode automation instructions
as a feature in the browser or screen-reader, e.g., the JAWS screen-
reader supports a shortcut to look up words in an online dictionary.
While user interfaces for handcrafting are available in some cases
(e.g., [22]), there is, however, an added burden on users to learn the
required scripting language. For example, to create macros for the
JAWS screen reader, users have to consult a 180+ page manual for
learning and using the JAWS scripting language. Compared to hand-
crafting, PBD based approaches are more user-friendly in that a user



can demonstrate how to perform a task by simply executing the
relevant browsing actions in a proper sequence; PBD approaches
(e.g., [19]) automatically record this sequence as a macro that can
be replayed anytime the user wants to do the same task again.
Furthermore, PBD based macros from one website can sometimes
be dynamically modified for reuse on other similar websites [8],
thereby making them scalable across websites. However, in all the
aforementioned PBD approaches, demonstrating the sequence of
actions in a macro from the beginning to the end, involve consid-
erable user time and effort. Smart Bookmarks [16] tries to ease
this burden to a little extent by letting the users indicate only the
end of macros whenever they have completed the corresponding
tasks; Smart Bookmarks tries to automatically infer the beginning.
However, this approach is not fully accurate. Nonetheless, all these
approaches lack flexibility; if a user wants to make changes to the
sequence of browsing actions in a macro, or if there are changes in
the website itself, the user has to re-record the task macro.

The proposed design and development of SuggestOmatic was
inspired by several ideas [25–27]. However, unlike the above PBD
approaches, SuggestOmatic does not record macros; it instead de-
pends on user’s Action History for identifying most-probable sub-
sequent user actions.

To improve flexibility and user experience, a few works [20, 22,
30] have looked at using state-transition models instead of macros.
These state-transition models represent tasks as a collection of
browsing states with browsing actions as transitions. These models
can either be manually defined or automatically constructed from
sequences of browsing actions using machine learning techniques
such as clustering, classification, and automata learning. By allow-
ing users to go back-and-forth between different states, a certain
degree of flexibility and ad-hoc ness can be achieved. However,
these models are static, the browsing actions are fixed, and there-
fore not scalable and adaptable; every time changes are required,
the models have to be rebuilt.

Perhaps the closest related work to SuggestOmatic is the pre-
dictive automation Assistant proposed by Yury et. al.[28]. Like
SuggestOmatic, the Assistant also uses a custom local alignment
algorithm on users’ past browsing history to predict and suggest
various browsing actions for automation. However, the Assistant
has several limitations. Firstly, the approach is not scalable across
websites because browsing actions are represented as actions on
HTML elements on the webpage. For example, an action Click
flights link recorded in a travel website cannot be used on other
travel websites since they may have a flights button instead of a link.
Similarly, the search button may be labelled differently on different
websites (e.g. find, go, arrow, etc.). In contrast, representing the
same actions in a semantically abstract manner, e.g., Select flights
menu option, Search for flights, etc., as is done in SuggestOmatic,
enables actions to be reused across websites, since mapping from
abstract logical entities (menu option) to actual DOMnode elements
(link, button) is done dynamically at runtime depending on the web-
site and context. Also, the Assistant supports only automation of
very basic browsing actions such as clicking and form filling; it does
not provide any support for navigating the screen-reader cursor
to content of interest, the main source of tedium and frustration
for blind screen-reader users. SuggestOmatic, on the other hand,
supports automated navigation.

Prediction of user browsing behavior, has also found applicabil-
ity in other application domains such as prefetching files [15, 24],
ecommerce, content personalization [7], etc., which are orthogonal
to the work presented in this paper. These applications typically
construct probability graphs similar to the previously mentioned
task models, and hence suffer from the same issues of errors due to
incorrect segmentations and clustering.

3 SUGGESTOMATIC DESIGN
3.1 Technical Preliminaries
In this section, we introduce some terminologies that will be used
in the remainder of the paper.

3.1.1 Logical SegmentModel. ALogical segment (LS) is a collection
of related HTML elements that share common spatial and functional
properties with a discernable visual boundary. For example, the
high-level visually-segregated blocks such as menu, sidebar, search
or login forms, main-content, search results, filter options, footer,
user comments section, widgets, etc., are all examples of Logical
Segments. A Logical Segment may have its own properties (e.g.,
dates of a calendar, price of an item, etc.) and can additionally be
recursively partitioned into sub-LSs. Each of these segments can in
turn have their own children which are segments themselves, and
so on. In this way, the entire webpage can be viewed as a hierarchy
of Logical Segments, and we refer to this hierarchy as a Logical
Segment (LS) Model.

To construct the LS Model, we borrow existing techniques in
the related literature [9, 10, 14]. These techniques build LS Models
by leveraging extensive custom-defined Web-Entity Ontologies [6]
that provide the necessary blueprints or meta information to iden-
tify and represent various Logical Segments, such as forms, filters,
menu, search-results, and calendars, as well as their characteristics
and relationships. Just like these techniques, we used the existing
well-studied methodologies and algorithms [6, 21, 34–36] to extract
the various Logical Segments from raw HTML DOM data, and then
use the custom defined ontology to represent and organize them
into an LS Model. Just like in [5], this Model is constructed dynam-
ically every time a new page is loaded and continuously updated
whenever new Logical Segments (e.g. widgets) are added to the
DOM. The representation for each Logical Segment in this Model
also stores the corresponding low-level mappings between that
Segment and the actual HTML content. For example, pointers to
the DOM nodes for various properties (e.g., price, brand, etc.) of
a result item are stored in the representation of that item. These
mappings are later used when the user picks a Action Suggestion.

3.1.2 User Action and Action History. We define any high-level
semantically meaningful interaction with a Logical Segment in the
extracted Logical Segment Model as a User Action. SuggestOmatic
recognizes the following user actions: (i) navigating to an LS (e.g.,
product item) or a property (e.g., price of the product item) of an LS;
(ii) filling out a form field; (iii) submitting a form; and (iv) selection
of a LS or one of its properties (e.g., selecting a flight, choosing a
date in the Calendar LS, etc.).

Storing User Actions as high-level LS operations as opposed to
low-level HTML operations makes SuggestOmatic scalable across
websites, since the same Logical Segment may not have the same
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Figure 2: Left: The Surface Dial input device and gestures;
Right: The onscreen SuggestOmatic dashboard.

underlying HTML structure in two different websites. The trans-
lation of User Actions to low-level HTML operations can then be
done at run-time depending on the current context (i.e., website)
using the mappings provided by the LS Model.

Action History is the chronologically ordered sequence of User
Actions. SuggestOmatic segregates Action History based on the
type (e.g., travel, shopping, social media, news, etc.) of website from
which user-activity data is collected; e.g., all User Actions on flight
reservation websites are stored separately from all User Actions
on shopping websites. In other words, SuggestOmatic maintains
different ActionHistory for different types of websites. Determining
the type of a website is a well-researched classification problem [1],
and we simply leverage these existing APIs.

3.1.3 Action Suggestion. An Action Suggestion is like a front-end
to a stored User Action. Specifically, it is a selectable option with a
textual description of the corresponding User Action as its label;
this label is read out whenever the suggestion is brought to focus
in the SuggestOmatic interface. The users can customize the text
descriptions by choosing between different templates for different
types of User Action. For example, for suggestions corresponding to
navigation User Actions, the templates can be Navigate to X, Jump
to X, or simply X.

3.2 SuggestOmatic Interface Description
For SuggestOmatic, we designed a novel interface with a separate
physical Microsoft Surface Dial (see Figure 2) as the input medium.
This design choice was based on the findings of other works in
the related literature [9, 10], that specifically demonstrated how
Dial-based rotate and press gestures were natural, intuitive, and
simple to execute, especially for web browsing.

Figure 3 presents an architectural schematic illustrating thework-
flow of the SuggestOmatic System. The user can either press regular
screen-reader shortcuts or press the Dial once to request for sug-
gestions. SuggestOmatic monitors shortcut presses, and leverages
the Logical Segment Model to convert these screen-reader actions
into high-level semantically meaningful logical User Actions. For
example, if a screen-reader shortcut press moves the focus to the
beginning of a Logical SegmentX , then the User Action Navigate to
X is stored in Action History. In case of suggestions, the users can
rotate the Dial to focus on various choices and then pick the one
they prefer by pressing the Dial. Choosing a selection will: (a) trig-
ger SuggestOmatic to send instructions to screen reader to perform
the corresponding (possibly a sequence) low-level actions using
the previously mentioned mappings provided by the LS Model;
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Figure 3: Architectural workflow schematic.

and (b) update the Action History by appending the User Action
corresponding to this executed suggestion. Every time the Action
History is updated either due to a shortcut press or selection of
a suggestion, the suggestion generator uses the Smith-Waterman
based scoring algorithm (described in next Section) to update scores
and consequently update the suggestion list with the next set of sug-
gestions. Also, before suggesting any User Action, SuggestOmatic
first determines if it can locate the corresponding Logical Segment
in its LS Model, and that the specified action can be performed on
this Logical Segment. At any point in time, users can customize the
interface, e.g., select the number of suggestions in the list, choose
between different templates for the textual labels of suggestions
corresponding to different types of User Actions, etc. Finally, while
navigating the suggestions list, the users can choose not to pick
any suggestion, and fall back to screen reader shortcuts by double
pressing the Dial.

3.3 Generating Suggestions
To generate the suggestions, we adapted the Smith-Waterman local-
sequence alignment algorithm [29]. Recall that the SmithWaterman
algorithm works as follows: If A = a1a2 . . . an and B = b1b2 . . .bm
are two sequences to be locally aligned, then assuming linear gap
penalty, the algorithm constructs a scoring matrix H of dimensions
(n + 1) × (m + 1) using the equations below:

Hk0 = H0l = 0, 0 ≤ k ≤ n, 0 ≤ l ≤ m

Hi, j =


H(i − 1, j − 1) + s(ai ,bj )
H(i − 1, j) −W

H(i, j − 1) −W

0
HereW is the gap penalty or cost of single gap, and s(ai ,bj ) is

the match benefit or similarity score. In our adaptation,W = 1, and
s(ai ,bj ) is determined according to the equation below:

sai ,bj =


1, if i , j & ai = bj

−1, if i , j & ai , bj

0, if i = j

The main idea or trick we employ to generate scores, based on
which action suggestions are made, is to match the Action History
sequence with itself, so that the best local alignments of most recent



Figure 4: Generating suggestions using adapted Smith Wa-
terman algorithm. The dotted circles represent candidates
for Action Suggestions.

suffixes of User Actions can be located throughout the past Action
History, and the User Actions following these matched alignments
can be offered as Action Suggestions. An example illustrating this
idea is provided in Figure 4. In this figure, the last row indicates the
scores for local alignments between the entire History and small
portions of the same History. For example, the value 2 in the third
column of the last row corresponding to local-alignment results
between the entire History sequence and the starting portion AB
of the same sequence. Therefore, using the scores in the last row,
we can identify potential candidates for subsequent automation
suggestions. For instance, in Figure 4, since AB at the beginning of
sequence aligns with the most recent actions AB at the end of the
sequence, coupled with the corresponding top alignment score 2 in
the last row, the next probable User Action may beC , and therefore
it is a top candidate for Automation Suggestion.

Note that we do not assign any match benefit for elements on the
leading diagonal of the scoring matrix (i.e., s(ai ,bj ) = 0, if i = j).
This is because the elements of both sequences come from the
same Action History and therefore they will always match, thereby
introducing a bias in the score computation by generating higher
scores for most recent User Actions, and overshadowing other
locally aligned parts of the sequence.

Using the LS Model, the top scoring candidates are then checked
in descending order to determine if they can be executed (since
sometimes a User Action recorded from one website cannot be used
in other similar website), and if so, they are added to the suggestion
list. Otherwise, these suggestions are deemed ineligible, and are
therefore discarded, and the next ranked candidate is inspected. This
process continues until either the required number of automation
suggestions are generated or there are no more candidates.

Each time a User Action gets appended to the Action History,
the internal scoring matrix H is updated using the above equations
and the next set of suggestions are generated using the updated
scores. Also, notice that given the above equations, we only need
to store the values of the last row and column at any point in time
instead of the entire matrix.

3.4 Evaluation
3.4.1 Methodology. To evaluate the algorithm, we first collected
browsing data (denoted by D1) to generate suggestion lists, and
then measured the goodness of the generated suggestions by com-
paring them against a test browsing dataset (denoted by D2). D1
was gathered by observing 20 users perform 2 different browsing
tasks, each on a different website. The 2 tasks were: (a) flight reser-
vation on Expedia website, and (b) product purchase on Amazon
website. These tasks were chosen such that they were comparable
in difficulty and also represented typical use scenarios for blind
screen-reader users.

For pragmatic reasons, we recruited sighted users for collecting
the data. It is well known that, on an average, it takes blind users
5-10 times longer to finish the tasks compared to sighted people,
thereby making data collection process expensive. However, since
SuggestOmatic operates at a semantic level of Logical Segments
and is independent of input modality (e.g., keyboard, mouse), it
works the same for both sighted and blind users. Additionally, the
actions suggested by the algorithm are based only on the website
content; they are not specific to non-visual web browsing.

To facilitate data collection from sighted users, the participants
were asked to think aloud while doing the tasks, i.e., explicitly in-
dicate what action they wanted to do next, e.g., “I want to look
at the search results”. These utterances were then manually trans-
lated into user actions on Logical Segments, e.g., Navigate to Search
Results before appending them to Action History.

Each participant was asked to do each browsing task 20 times,
each time with different task parameters, e.g., shop for different
products on Amazon. Since the participants were encouraged to
do ad-hoc browsing while doing these tasks, each time they varied
their browsing actions, e.g., filling form fields in different order,
choosing different filters for search results, sorting search results
based on different criteria, reviewing product details and customer
comments, changing the travel dates and reloading the search-
results page, randomly exploring the page, etc., thereby resulting in
20 different action sequences for each task per user. The resulting
D1 dataset contained a total of 800 sequences (40 per participant;
400 sequences each for flight reservation and product purchase)
with the distribution of User Actions being 80.5% navigation, 3.4%
form-field filling, 1.9% form submission, and 14.2% Logical Segment
selection.

To gather the test dataset D2, we asked the participants to do the
same tasks after a gap of one week. Additionally, they were also
asked to do these tasks on other similar websites (Priceline for flight
reservation, and Walmart for product purchase). All participants
stated that they couldn’t recollect the exact action sequences they
did a week before; however, they could remember some of the user
actions they performed while collecting D1. D2 dataset consisted of
80 action sequences (4 per participant, 40 each for flight reservation
and product purchase) with the distribution of user actions being
83.6% navigation, 4.2% form-field filling, 1.4% form submission, and
10.8% Logical Segment selection.

We used the mean reciprocal rank (MRR) metric to evaluate the
goodness of the suggestion lists generated from D1. IfA = a1 . . . an
is an action sequence generated by a user inD2, andS = S1 . . . Sn−1
is the corresponding sequence of suggestion lists generated from



Flight Reservation Product Purchase
Same Website Similar Website Same Website Similar Website

Algorithm µ1 µ10 µ20 µ1 µ10 µ20 µ1 µ10 µ20 µ1 µ10 µ20
Bi-gram 0.11 0.22 0.29 0.07 0.15 0.17 0.08 0.13 0.17 0.06 0.13 0.18
F(Bi-gram) 0.14 0.26 0.37 0.12 0.18 0.19 0.12 0.19 0.25 0.07 0.20 0.25
Smith-Waterman 0.19 0.37 0.47 0.15 0.21 0.29 0.20 0.27 0.36 0.12 0.36 0.41
F(Smith-Waterman) 0.21 0.44 0.52 0.19 0.30 0.45 0.23 0.34 0.48 0.15 0.46 0.51

Table 1: Accuracy of predicting subsequent User Actions from past user Action History using different algorithms. Average
MRR values µi have been reported for the first, tenth and the last iteration of the evaluation.

that user’s Action History for the same task in D1, where each Si is
a list of suggestions for the next action ai+1, then MRR is given by:

MRR(A,S) =
1

n − 1

n−1∑
i=1

ϕi

ϕi is the utility function that is defined as follows:

ϕi =

{ 1
rank (ai+1)

, if ai+1 ∈ Si

0, otherwise

rank(ai+1) is the position of ai+1 in the suggestions list Si . If the
ground truth action ai+1 is not present in Si , then utility ϕi =
0. Therefore, higher MRR values indicate better suggestion lists,
i.e., a higher proportion of User Actions in sequences of D2 are
present in the corresponding suggestion lists generated from D1,
and furthermore the ranks of these actions in the lists are higher.

The evaluation was done in iterations. In the first iteration, only
one action sequence (from same user for the same task) in D1 was
used to generate the suggestion lists S to compare against the
corresponding ground-truth action sequenceA in D2; in the second
iteration, two action sequences in D1 were used to generate the
suggestion lists. Specifically, a randomly selected action sequence
was appended to the Action History of the first iteration before
generating the suggestion lists; in the third iteration – three action
sequences we used; and so on. Also, in our evaluation, we used a
fixed size 5 for all suggestion lists Si ∈ S.

3.4.2 Results. Table 1 shows the MRR values for two algorithms
used for generating Action Suggestions: (a) Bigram frequency –
predict the next action only based on the current action (as done
by Trailblazer [8] for form filling tasks); and (b) Smith Waterman
algorithm as described in Section 3.3. F (·) indicates that ineligible
suggestions were excluded while generating the Suggestion Lists
as described in Section 3.3. Also, we report the average MRR values
obtained at the first (µ1), tenth (µ10), and the last (µ20) iterations of
evaluation.

The results clearly demonstrate the benefit of using a sequence
of past User Actions (i.e., Smith Waterman) instead of just the most-
recent action (i.e., bigram) for generating suggestions. For example,
the users typically refined their search criteria (e.g, by departure
time, by airlines, by manufacturer, etc.) if the first few search results
did not match their needs. Therefore, the action sequence before
applying the search filters typically consisted of alternating user
actions of the following two types – (a) look at one or two property
values (e.g., price) of an search-result item, and (b) go to the next

item. Our Smith-Waterman based approach was able to use this con-
textual information provided by the most-recent action sequence to
suggest filtering the search results; the ranking of this suggestion
increased as the user browsed through more search-result items.
Bigram frequency based suggestion model on the other hand, could
not capture this context, and hence could not suggest filtering the
results when the users needed it.

Also, the MRR scores improved as more and more action se-
quences were appended to the Action History before generating
the suggestions (since µ20 > µ10 > µ1 in all cases), which indicates
that the quality of suggestions improve over time with longer Ac-
tion History, i.e., as more User Actions are appended to the Action
History. Unsurprisingly, the results were better when filtering was
applied in both algorithms. The results also demonstrate the scal-
ability of our approach across similar websites, especially when
ineligible suggestions were excluded.

4 USER STUDY
4.1 Participants
We recruited participants for our study through local mailing lists
and word-of-mouth. After preliminary screening via phone inter-
views, we recruited 12 participants (P1 to P12) who were completely
blind, and conducted the study at the Lighthouse Guild in New York
city. The inclusion criteria included familiarity with Internet Ex-
plorer Web browser and one of the following two screen readers,
JAWS and NVDA. None of the participants had any kind of motor
impairment. The participants varied in age from 30 to 58 (mean: 37.3,
median: 35, SD: 8.3), gender (8 men, 4 women), and web-browsing
experience with screen readers (6 adepts, 3 intermediates, and 3
beginners). On average, the participants indicated they browsed
the internet for 3.7 hours daily.

4.2 Study Setup
We designed real-world browsing tasks to evaluate SuggestOm-
atic. These tasks were transactional in nature, requiring a sequence
of steps. The websites for these tasks were selected from 2 cate-
gories: flight reservation and online shopping. For flight reserva-
tion, we chose Priceline and Kayak, and for shopping, we chose
Walmart and eBay.On each of these websites, the participants
were asked to complete the following 2 tasks: T1. Find the search
form, fill-out the form with experimenter-provided data (e.g., flight-
reservation details, product name) and hit the search button; T2.
On the search-results page, find the search-result item that satis-
fies certain experimenter-provided criteria (e.g., number of stops,



layover duration, departure times, etc. for flight reservation; price,
rating, vendor, etc., for shopping).

The participants performed these tasks under the following 2
conditions (one website in each category per condition): (i) Macro.
Participants can use the Dial-based web automation interface to
access a sequence of lists of (static) pre-determined Action Sugges-
tions. Each selection of a suggestion will perform the corresponding
automation and refresh the interface content with the next set of
pre-determined suggestions. Therefore, the system is always in con-
trol. This was also the baseline condition that we used to simulate
the extant script-based web automation solutions; (ii) SuggestOm-
atic. Participants can use the same Dial-based interface to access
the list of dynamically generated Action Suggestions based on past
Action History, and select one of them if desired.

Prior to the study, participants were asked to do similar tasks as
above on Expedia and Amazon websites using regular screen-reader
shortcuts in order to build Action History profiles. Then, they were
given sufficient instructions and time (~30 min) to familiarize them-
selves with both conditions on these websites, while at the same
time extending their Action History profile. The Action History
built during this practice session was then used as a bootstrap for
generating Action Suggestions during actual tasks on unfamiliar
task websites – Priceline, Kayak, Walmart and eBay.

Tominimize the learning effect, we counterbalanced the ordering
of websites and conditions, while ensuring that no two websites be-
longing to the same category (e.g., flight reservation) was assigned
to the same condition. To avoid confounds, the number of sugges-
tions given at any instant in both conditions were set to 5. Also, the
cached versions of the websites were used so that all participants
interact with the same search results. The macros were designed in
a focus group with accessibility experts where the sequence of lists
of Action Suggestions, as well as the ranking of each suggestion in
every list, were decided for all the websites used in the study.

4.3 Findings
4.3.1 Task Completion time. We measured completion times sep-
arately for 2 categories of websites used in the study – Flight
reservation and Shopping.

Flight reservation.We found significant effect of study condi-
tions on completion time for task T2 (t(11) = 4.9595, p = 0.0004).
However, no such statistically significant difference was observed
for task T1 (t(11) = 0.7515, p = 0.4681). The mean completion times
for tasks T1 and T2 under each condition are shown in Figure 5.
For task T2, when using SuggestOmatic, the mean completion time
(122.58s) was reduced by 17.4% compared to that of the baseline
Macro condition (148.33s).

Shopping. We found significant effect of study conditions on
completion time for task T1(t(11) = 6.916, p < 0.001) and T2
(t(11) = 7.937, p < 0.001). The mean completion times for tasks
T1 and T2 under each condition are also shown in Figure 5. For
task T1, when using SuggestOmatic, the average mean completion
time (29.75s) was increased by 53.2% compared to that of the Macro
condition (19.41s). However, for Task2, the average mean comple-
tion time (145.83s) was reduced by 29.0% compared to the baseline
Macro condition (205.25s).

Macro SuggestOmatic

Macro SuggestOmatic

Figure 5: Completion times for 2 tasks using Macro and Sug-
gestOmatic for: (a) flight reservation and (b) shopping. Error
bars show +1/-1 SD.

Task T1: With SuggestOmatic, the participants initially spent a
little time navigating with shortcuts before requesting suggestions
and then choosing the “go to search form” suggestion. However,
with Macro, they straightaway went for the suggestions and com-
pleted the task. While such user behavior was seen for both flight
reservation and shopping tasks, the difference in task completion
times is more noticeable in shopping tasks since there was only one
form field to fill; in the flight-reservation tasks, this initial overhead
of pressing shortcuts was negligible compared to the time spent on
filling multiple form fields.

Task T2: For both flight reservation and shopping tasks, under
SuggestOmatic condition, the participants cleverly alternated be-
tween choosing automation suggestions and pressing screen-reader
shortcuts, i.e., use suggestions to navigate between items and then
shortcuts to navigate within items. However, under the system-
controlled Macro condition, they performed all actions by going
through the suggestions list and picking one each time, which took
more time while navigating the content within each search-result.

4.3.2 SuggestOmatic Suggestions and User Behavior. The average
number of times SuggestOmatic suggestions were requested for
Tasks T1 and T2 were 1.123 (SD 0.78) and 6.041 (SD 2.5) respectively.
For Task T1, SuggestOmatic was just used to automate navigation
to the search form; form filling and navigating between fields were
mostly done using screen-reader shortcuts. For Task T2, almost
all participants (11 out of 12) chose to request SuggestOmatic for
suggestions to navigate between different search-result items. This
enabled them to directly jump to the next/previous item without
having to listen to the rest of content of a result item that they
were not interested in. Only P7 chose to navigate the content of
the search results one by one using standard shortcuts.



Also in Task T2, except P3 and P10, all other participants did not
go through the entire list of suggestions before making a choice,
thereby sometimes missing out on suggestions that could have
helped them complete Task T2 faster. For example, based on par-
ticipants’ Action History, the suggestion “go to next flight item”
was found to be always ranked higher than the suggestion “go to
the duration of the next flight item”. Therefore, the participants
who hurriedly picked the former suggestion had to do a few extra
steps to navigate to the duration property value of the next flight
item. Furthermore, 10 out of 12 participants completed task T2
by simply navigating the result items one by one; only P10 and
P12 chose suggestions to select different filter options (e.g., brand,
airline, departure time, etc.) and narrow down the search results.

We also found significant effect of study conditions on ranking of
selected Action Suggestions for Task T2 (Wilcoxon rank-sum test,
Z − score = 7.731, p < 0.0001). No such significant difference was
observed for Task T1 (Z − score = −0.484, p = 0.631). The average
ranking of suggestions selected in the SuggestOmatic condition for
Tasks T1 and T2 were 1.74 (SD 0.43) and 1.49 (0.94) respectively,
compared to 1.65 (SD 0.47) and 2.82 (SD 1.13) in theMacro condition.
In Task T1, the suggestions mostly selected were top suggestions
such as “go to search form”, “go to next field”, etc., so there was not
much difference between the two conditions. However, in Task T2
that involved navigating result items, the dynamic generation of
suggestions (based on Action History) by SuggestOmatic at each
step helped push user-desired subsequent actions up the suggestion
list, unlike the Macro condition where the ordering of suggestions
was statically fixed.

Lastly, the average number of shortcuts used under the Sug-
gestOmatic condition for Task T1 and Task T2 were 9.08 (SD 7.52)
and 31.41 (SD 13.07). As mentioned earlier, the shortcuts were used
mostly to navigate between form fields in Task T1, and navigate
the content (e.g., price, duration, etc.) within search-result items.

4.3.3 Usability Rating. At the end of each study session, every
participant was administered the standard System Usability Scale
(SUS) questionnaire [13] where they rated positive and negative
statements about each study condition on a Likert scale from 1
for strongly disagree to 5 for strongly agree, with 3 being neutral.
There was no significant difference in the SUS score between Sug-
gestOmatic (µ = 86.6, σ = 3.72) and Macro (µ = 85.6, σ = 4.22)
conditions, t(11) = 0.698, p = 0.499. In fact, the average score of
SuggestOmatic is slightly higher than that of Macro. This can be
attributed to the majority of participants stating that they could
find the suggestions they were looking for relatively quicker in
SuggestOmatic compared to Macro, and also being able to alternate
between shortcuts and suggestions with SuggestOmatic.

5 DISCUSSION
Our results suggest that overall, participants had a very favorable
opinion of the Dial-based SuggestOmatic interface. Interestingly, all
participants mentioned that the interface felt like a surrogate mouse.
For instance, P2 stated that she could use the Dial to quickly move
the screen reader focus to the desired segment through Action
Suggestions, akin to how a mouse is used by sighted people to
quickly point to the desired Logical Segment on the page.

Almost all participants stated that limitations of screen readers
make them restrict their web browsing to a few select websites that
they are familiar and comfortable with. Therefore, the participants
stated that they were surprised when SuggestOmatic was able to
generate suggestions for websites that they had never visited before.
After knowing that these suggestions were generated from the
activity data collected from other similar websites during practice,
they acknowledged that SuggestOmatic could help them increase
the range of websites they can interact with comfortably.

Our results also indicate that all participants (except P3) pre-
ferred to be in control while performing a web task. They indicated
that this enables ad-hoc exploration, which is very important when
making decisions (e.g., selecting a flight, buying a product). In this
regard, they especially liked the ad-hoc single-step suggestions
provided by SuggestOmatic, that they can rely on when they get
stuck or lose their orientation in a website. However, a few par-
ticipants also indicated that multi-step “goal-oriented” macros are
more useful in certain scenarios. For example, P3 and P4 stated that
using a macro to fill out a form is more reliable, given that they
don’t have to worry about missing any form field.

Limitations of SuggestOmatic. The primary limitation of Sug-
gestOmatic is its dependence on the initially seeded Action History
data for generating suggestions. However, in our study, we observed
that data gathered in a short practice time of around 30 minutes
was sufficient to generate relevant suggestions; only in 5 times
out of 172, the participants did not pick any of the suggestions.
Interestingly, all these 5 cases occurred when the participants were
browsing through the properties (e.g., flight duration, price, etc.) of
search-result items and they wanted to compare these values with
the corresponding property values of one of the previous items.
Secure and privacy-preserving sharing of Action History data may
also help with the cold start issue of SuggestOmatic, and may also
help in generating relevant suggestions that may not have been
previously recorded in the user’s own Action History.

6 CONCLUSION
This paper describes SuggestOmatic, an auto-suggest model for
blind users to effortlessly browse the Web. SuggestOmatic executes
user’s low-level browsing operations on demand, thereby letting
them focus on what they want to do rather than how to get it done.
To facilitate this, SuggestOmatic leverages user’s past Action His-
tory, represented as an abstract temporal sequence of operations
over logical segments, to identify and proactively suggest a small set
of User Actions that will, with high likelihood, contain the action
that the user will want to do next. This unique and novel represen-
tation of history elevates the level of interaction from operating
on (syntactic) HTML elements, as is done now in screen readers,
to operating on “semantic” Logical Segments. Besides addressing
some of the serious shortcomings underpinning interaction with
screen readers, the semantic representation makes SuggestOmatic
scalable across web sites. A user study suggests that SuggestOmatic
has the potential to transform web accessibility.
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