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Abstract— The CiteSeerx project at the University of Ar-
kansas uses a browsing interface is based on the Associa-
tion for Computing Machinery's Computing Classifica-
tion System (ACM CCS). CCS contains just 369 catego-
ries whereas the CiteSeerx database contains over 2 mil-
lion documents.  This results in more than 6500 docu-
ments per category, far too many to browse.  To address 
this problem, we are exploring ways to automatically ex-
pand the CCS ontology. Previous work has focused on 
using clustering to automatically identify the new clas-ses.  
This work focuses on how to label the subclasses in a se-
mantically meaningful way to that they can sup-port user 
browsing.  We develop methods based on text mining 
from the subclass members to extract class la-bels.  We 
evaluate three methods by comparing the suggested labels 
with human-assigned labels for exist-ing categories.  

Keywords-ontologies, labeling, text mining 

 

I. INTRODUCTION 
With the maturity of the Internet and improvements 

in storage technologies, the Web is overwhelmed with 
data. As a result, browsing system based interfaces 
need to employ new approaches that support users ex-
ploring massive amounts of data. Many browsing sys-
tems are based on an ontology or conceptual hierarchy 
that represents the underlying knowledge domain. By 
exploring classes within the ontology, users can 
browse information in an organized manner. 

As the number of documents in a corpus/collection 
increases, the number of classes to which they are re-
lated also increases. Therefore, if an ontology remains 
static as documents are added, then too many docu-
ments are associated with each class, affecting the 
scalability and usability of the browsing interface. On-
tologies need to grow as the information they organize 
grows. Traditionally, growing and maintaining an on-
tology is a manual, labor-intensive task that requires 
formal ontology engineers familiar with domain-
specific knowledge. Research into automatic ontology 

expansion focuses on providing more scalable tech-
niques to provide ontology adaptation.  

One approach to ontology expansion divides the 
contents of a class in an existing ontology into classes 
using clustering techniques. This is automatic division 
of leaf classes into subclasses such that data points in 
the same subclass are closely related to each other and 
also far apart from data points in other subclasses. Re-
searchers have developed various algorithms to per-
form this division, typically employing clustering 
techniques to identify and form the new subclasses.  

Although clustering techniques for text documents 
have been widely studied, less attention has been paid 
to creating good cluster descriptors. Often times, auto-
matically created cluster descriptors either fail to pro-
vide a comprehensive description of the cluster or con-
sist of lists of terms from which a person cannot infer a 
general description.  

In this paper, we propose a new algorithm that au-
tomatically assigns concise labels to subclasses in a 
hierarchical ontology. Our contributions are as follows: 
(1) we describe an automatic ontology expansion tech-
nique based on clustering; and (2) we evaluate a new 
labeling algorithm to label the newly created sub-
classes. 

The rest of the paper is organized as follows. Sec-
tion 2 presents previous research on ontologies and 
cluster labeling. Section 3 describes the architecture 
and the ontology expansion process in detail. Section 4 
provides experimental results. Section 5 summarizes 
our findings and offers suggestions about possible fu-
ture improvements. 
 

II. RELATED WORK 

A. Ontologies 
The new era of the Semantic Web [22] has enabled 

users to extract semantically relevant data from the 
web [12]. The Semantic Web relies heavily on formal 
ontologies to structure data for comprehensive and 
transportable machine understanding. For the Semantic 
Web to be successful, we will need wide-scale availa-
bility of ontologies across many domains [15]. In prac-
tice, building ontology for intelligent systems involves 
domain-specific experts’ efforts to manually identify a 
set of representational primitives [19] and integrate 
them into an ontology system [14,19,20].  
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B. Ontology Creation/Refinement 
To address the ontology creation bottleneck, re-

searchers are exploring ways to reuse ontologies and to 
build them using semi-automatic and automatic tech-
niques [20, 21]. Velardi et al. [1] give a comprehensive 
overview of approaches for constructing ontologies.  
They also introduce a new semi-automatic technique to 
build domain ontologies. Speretta et al. [2] present an 
automatic technique, which selects appropriate domain 
ontologies from the collection of already existing on-
tologies of a given set of documents.  Carmel et al. [7] 
suggests, selecting appropriate domain ontology and 
refine the ontologies based on document collection. 

In [6], Carvalheria et al. provide a method for the 
semi-automatic construction of ontologies using texts 
of any domain for the extraction of classes and rela-
tions. By comparing the relative frequency of terms in 
the text with their typical, expected use, the method 
identifies classes and relations; they then represent the 
corresponding ontology using OWL so that it can be 
used by other applications. 

Researchers working on the creation or expansion 
of ontologies need an evaluation technique to measure 
the quality of the created ontology. According to Fang 
et al. [9], the quality of formal ontology requires both a 
good conceptualization of a domain and a good speci-
fication of the conceptualization. They suggest that the 
terminology and the structure of the ontologies also 
need to be evaluated. 

C. Cluster Labeling 
 Cluster labeling is a process of extracting unique 

features or descriptors to represent a cluster of topical-
ly related documents. [13, 17] review the performance 
of a variety of automatic labeling methods. Their re-
sults show that differential labeling outperforms clus-
ter-internal labeling and hybrid methods. 

The most common cluster descriptors are either 
concise labels or lists of terms and phrases. For exam-
ple, Geraci et al. [3] describe ARMIL, a meta-search 
engine that groups into unique labeled clusters. Their 
cluster generation is done by the furthest-point-first 
algorithm, an approximation of k-center clustering, and 
the labeling is considered as a combination of intra-
cluster and inter-cluster term extraction. 

 Carmel et al. [7] also describes a general frame-
work for cluster labeling that extracts cluster labels 
from Wikipedia.  They suggest extracting most im-
portant keywords or bigrams from clusters that are then 
presented as queries to search engine to retrieve rele-
vant Wiki pages. The resulting topics or related terms 
associated with those Wiki pages are selected as labels 
for the clusters.  Similarly, a machine-readable diction-
ary that is organized conceptually can also be used for 
labeling [14].  

 

III. ONTOLOGY EXPANSION  
In this section we discuss our ontology expansion 

approach in detail. As many researchers suggest, we 
start with an appropriate domain ontology relevant to 
our document collection in CiteSeerX. We choose 
ACM’s Computing Classification System (CCS) [10], a 
3-level deep ontology that classifies scientific papers; 
then we will expand only those CCS classes that are 
growing rapidly and/or contain thousands of docu-
ments. For example, Network Protocols (C.2.2) is a 
class in the CCS, that has been extensively studied and 
it contains papers describing over 70 protocols for the 
various layers of the OSI model. It continues to grow 
dynamically as  more and more documents are pub-
lished.  The current CiteSeerx corpus contains more 
than 2762 documents related to this topic.  Browsing 
through all of the documents in this class to locate 
those relevant to a particular protocol would be a time 
consuming task for users. It, and other classes with 
many associated documents, need to be split into sub-
classes for effective browsing, partitioning the docu-
ments into smaller, more cohesive clusters. 

 
Fig 1. Ontology Expansion Model 

 
 

A. Document classification 
Only 2.6% percent of the CiteSeerX corpus is tagged 

with classes from ACM’s CCS.  To associate the rest 
of the documents with CCS classes, we used a k-
nearest-neighbors (kNN) classifier [16] previously 
built as part of the KeyConcept [5] project.  The au-
thor-tagged documents were collected and used as 
training documents for the classifier.  The untagged 
documents were then compared to the training docu-
ments based on their vocabulary and classified into the 
best matching class.  
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As discussed earlier, the large number of published 
documents available means that too many documents 
are classified into the same class, making the existing 
CCS unsuitable for  a browsing interface for CiteSeerX. 
Therefore, we need to divide large classes into sub-
classes to enhance browsing system. Based on the re-
sults of Nanhong et al. [4], we use the Direct clustering 
algorithm implemented in Cluto [11, 18] to expand the 
existing 3-level deep CCS ontology into a 4-level deep 
ontology. In contrast to the repeated bisection method, 
the k-clustering solution is computed by simultaneous-
ly finding all k-clusters. The results of [4] on CiteSeerX 
collections shows “Direct algorithm” has the mini-
mum entropy and maximum purity compared to other 
algorithms in Cluto. 

B.  Labeling Subclasses 
After clustering, the next task is to append these 

clusters as subclasses in ontology, requiring labels to 
appropriately describe the documents classified into 
them. Hence, our primary goal is to assign concise 
labels to subclasses as if they were manually assigned. 
As a first step to this process, we perform part-of-
speech tagging on the document content, allowing us 
to focus our text mining for labels on nouns, the most 
common part of speech used for class labels.  

There are two primarily features considered by our 
class label text miner: the frequency of the word within 
a cluster and distribution of word occurrences across 
the sibling clusters. In the next section, we discuss 
three different label-weighting methods we developed 
and evaluated  to label subclasses. 

C.  Label-weighting Methods 
We present three label-weighting methods, our base-
line and two novel methods that we will evaluate in the 
next section. 
 

TFIDFic: 
This is one of the classic formulae commonly used 

by the information retrieval community. TFIDF stands 
for term frequency–inverse document frequency, a 
measure that calculates the importance of a word as a 
descriptor of document contents based the word's fre-
quency within the document and its frequency of oc-
currence in all documents in the corpus. Treeratpituk et 
al. [8] calculates !"#$"!"    as follows:  

!"#$"!"     = !"!" ∗ log
!"
!"!

 

where !"!", is the frequency of word i in cluster c, 
!"! represents the number of clusters in which word i 
appears, and NC is the total number of clusters. The 
log of NC/DFi is the classic inverse document frequen-
cy measure. A word with high TFIDF value is ex-
pected to be more important to the cluster and thus be a 

good cluster descriptor. Because of its widespread use, 
we chose TFIDF as our baseline for label selection. 
 

DeltaTFic: 
This method is our first novel method.  It simply 

identifies terms that appear much more frequently in 
the current cluster as compared to other clusters.  More 
formally, DeltaTFic is a frequency of term i in cluster c 
calculated as minus the average term frequency of i in 
rest of the sibling clusters.  Computationally this is very 
inexpensive and quite scalable. 

 

!"#$%&'!" = !"!" −   
!"!!!!!∈  {!!!}

!" − 1
 

 
where !"!", is the frequency of word i in cluster c,  

and NC is the total number of clusters  
 
TFStDevic:  
 
This is a novel approach uses the same TF metric as 

the first method but, rather than using inverse docu-
ment frequency to capture the term distribution across 
clusters, it uses standard deviation. Standard deviation 
is a widely used statistical metric that measures the 
variation of a particular data point from the sample 
mean. In labeling subclasses, this metric is applied to 
locate words that occur in one cluster more frequently 
than would be statistically expected.  These statistically 
surprising words are then selected as class labels.  

 
!"#$%&'!" = !"!" ∗ !"#$%#&%  !"#$%&$'(  !"  !"#!  

 
where relative term frequency, !"#! =   

!"!"
!

, the 
term frequency in cluster c, normalized by the cluster 
size |c|, the number of term occurrences within the 
cluster.  Note, we also evaluated using the standard 
deviation of TF in this formula, but it did not perform 
as well, so it is not discussed further. 

 
EVALUATION 
The previous section provides automated ontology 

expansion technique and labeling methods. Now, we 
carry out our experiments to examine how each of the-
se methods performs in ontology expansion and label-
ing. 

A. Data Set: 
As mentioned earlier, we are using ACM’s CCS on-

tology for our CiteSeerX collection. CCS contains 369 
classes organized in a 3-level deep hierarchy. Opera-
tionally, we want to label the level-4 clusters produced 
by Cluto.  However, in order to evaluate our labeling 
algorithms, we need to compare the labeling results in 
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clusters whose true names are known.  Thus, we select 
20 level-2 classes and select all the human classified 
level-3 subclasses of these classes. There were a total 
of 150 level-3 classes in our test set. 

 We compare our automatically extracted labels 
with those manually assigned as part of the CCS to see 
how well our text mining approach matches the true 
class names.  For each selected class, we randomly 
choose 100 documents and generated labels for them 
using our aforementioned algorithms. 

B. Labeling Evaluation: 
To evaluate labeling of clusters, we need to com-

pare the results produced with human assigned titles. 
We consider the highest-weighted 3 labels produced by 
different algorithms. Each of these labels is compared 
with human assigned titles. We evaluate the quality of 
labeling method with the F-measure described in [4] 
that combines precision and recall together into a sin-
gle metric.  Precision calculates the percentage of ex-
tracted labels that are the same as the true human-
assigned labels. It essentially measures the accuracy of 
the extracted labels. 

!"#$%&%'(   =     
!!

!
!!!

!
 

where !! = 1 if the ith label occurs within the actual 
titles. !! = 0 if the ith label does not match with user 
assigned titles, and ! is the number of labels extracted 
using that algorithm.  In contrast, recall calculates the 
percentage of the human-assigned labels found by the 
text mining approach. It essentially measures how 
comprehensive the extracted labels are. 

!"#$%% =   
!!

!
!!!

!
 

Where ! is the number of keywords in human as-
signed titles. 

Using precision and recall, described above, F-
Score is defined as, 

!"#$%& =
2 ∗ !"#$%&%'( ∗ !"#$%%
(!"#$%&%'( + !"#$%%)

 

 
In order to select the best labeling algorithm, we 

evaluate the performance of the algorithms in Section 
3.2 in terms of precision, recall, and F-Score. 

 
 
 

TABLE I.  ACCURACY COMPARISON OF THE LABEL 
EXTRACTION ALGORITHMS 

  Precision Recall F-
Score 

Min TFIDF 0.08 0.14 0.11 
DeltaTF 0.17 0.21 0.17 

TFStDev 0.22 0.42 0.32 
 

Avg 
TFIDF 0.18 0.26 0.20 
DeltaTF 0.36 0.46 0.41 
TFStDev 0.47 0.56 0.55 

 

Max 
TFIDF 0.33 0.40 0.36 
DeltaTF 0.57 0.60 0.73 
TFStDev 0.67 1.00 0.75 

 
Table 1 shows minimum, maximum and average 

values for precision, recall and FScore for each label-
ing algorithm. From the results, we can see that Del-
taTF and TFStDev both produced better results than 
the TFIDF baseline. The FScore for DeltaTF was dou-
ble that of the TFIDF, and TFStDev was almost triple.  
Of all three methods, TFStDev was by far the best.  

To improve our understanding, consider the 6 level-
3 children of the class “Logic programming”. TFIDF 
produced “xsb; program; thread” as top three results 
out of which no terms match the actual titles. DeltaTF 
outputs “logic; case; example” as the top three labels 
for this cluster of which “logic” matches with the title 
but the remaining labels are unique. TF-STDev deter-
mined “logic; program; constraints” as top three re-
sults of which two match the original title terms, the 
maximum possible since the title only had two terms. 

TABLE II.  RESULTS OF DIFFERENT METHODS FOR LEVEL2 
CLASS “PROGRAMMING TECHNIQUES”  

CCS Class TFIDF DeltaTF TFStDev 

Automatic  
programming 

gpf program partial 
tag partial program 

program static static 
Applicative  
(functional)  

programming 

procedure type functional 
reg haskell procedure 

stream procedure type 

Object–oriented 
programming 

system class class 
object method object 

language object program 

Concurrent  
programming 

actor event concurrent 
event concurrent event 

time synchronization synchroniza-
tion 

Logic  
programming 

xsb logic logic 
program case program 

thread example constraints 

Visual  
programming 

user user user 
visualizer menu program 
cicsplex interface system 

 
From the results we can see that, although all algo-

rithms produce good results, the TFStDev labels over-
lap the true class names more often. We also observe 
that, the label “program” has appeared as high 
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weighted term for four subclasses when using TFStDev 
even though that label is most commonly occurring 
term in all the classes. However, the word "program-
ming" also occurs in many of the human-assigned class 
names as well. 

IV. CONCLUSION 
Stimulated by the need for a more comprehensive 

browsing interface for CiteSeerX, we have developed 
automatic dynamic ontology expansion technique. In 
this work, we focus on a new approach for labeling the 
new subclasses and evaluated our approach with exist-
ing CiteSeerX class labels. In particular, we compared 
the TFIDF, DeltaTF, and TFStDev methods on a set of 
150 level-3 classes.  Based on our results, we found 
that the TFStDev method performed the best.  On av-
erage, it produced an average F-score of 55%.  It sug-
gested roughly half the words that were contained in 
human-assigned class labels and half of the labels it 
suggested were indeed in the class names.  

Our future work will focus extending the work for 
to include noun phrases rather than single terms. We 
will also deploy our work on the CiteSeerX site and 
evaluate the quality of our labels on subclasses created 
by our clustering techniques. These classes are likely to 
contain noisier collections of documents than those 
classes created manually so it will be important to see 
how well the methods work in practice. 
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