

Automatic Class Labeling for CiteSeerX

Surya Dhairya Kashireddy

Susan Gauch
Syed Masum Billah

Computer Science and Computer Engineering
University of Arkansas
Fayetteville, AR 72701

Abstract— The CiteSeerx project at the University of Ar-
kansas uses a browsing interface is based on the Associa-
tion for Computing Machinery's Computing Classifica-
tion System (ACM CCS). CCS contains just 369 catego-
ries whereas the CiteSeerx database contains over 2 mil-
lion documents. This results in more than 6500 docu-
ments per category, far too many to browse. To address
this problem, we are exploring ways to automatically ex-
pand the CCS ontology. Previous work has focused on
using clustering to automatically identify the new clas-ses.
This work focuses on how to label the subclasses in a se-
mantically meaningful way to that they can sup-port user
browsing. We develop methods based on text mining
from the subclass members to extract class la-bels. We
evaluate three methods by comparing the suggested labels
with human-assigned labels for exist-ing categories.

Keywords-ontologies, labeling, text mining

I. INTRODUCTION
With the maturity of the Internet and improvements

in storage technologies, the Web is overwhelmed with
data. As a result, browsing system based interfaces
need to employ new approaches that support users ex-
ploring massive amounts of data. Many browsing sys-
tems are based on an ontology or conceptual hierarchy
that represents the underlying knowledge domain. By
exploring classes within the ontology, users can
browse information in an organized manner.

As the number of documents in a corpus/collection
increases, the number of classes to which they are re-
lated also increases. Therefore, if an ontology remains
static as documents are added, then too many docu-
ments are associated with each class, affecting the
scalability and usability of the browsing interface. On-
tologies need to grow as the information they organize
grows. Traditionally, growing and maintaining an on-
tology is a manual, labor-intensive task that requires
formal ontology engineers familiar with domain-
specific knowledge. Research into automatic ontology

expansion focuses on providing more scalable tech-
niques to provide ontology adaptation.

One approach to ontology expansion divides the
contents of a class in an existing ontology into classes
using clustering techniques. This is automatic division
of leaf classes into subclasses such that data points in
the same subclass are closely related to each other and
also far apart from data points in other subclasses. Re-
searchers have developed various algorithms to per-
form this division, typically employing clustering
techniques to identify and form the new subclasses.

Although clustering techniques for text documents
have been widely studied, less attention has been paid
to creating good cluster descriptors. Often times, auto-
matically created cluster descriptors either fail to pro-
vide a comprehensive description of the cluster or con-
sist of lists of terms from which a person cannot infer a
general description.

In this paper, we propose a new algorithm that au-
tomatically assigns concise labels to subclasses in a
hierarchical ontology. Our contributions are as follows:
(1) we describe an automatic ontology expansion tech-
nique based on clustering; and (2) we evaluate a new
labeling algorithm to label the newly created sub-
classes.

The rest of the paper is organized as follows. Sec-
tion 2 presents previous research on ontologies and
cluster labeling. Section 3 describes the architecture
and the ontology expansion process in detail. Section 4
provides experimental results. Section 5 summarizes
our findings and offers suggestions about possible fu-
ture improvements.

II. RELATED WORK

A. Ontologies
The new era of the Semantic Web [22] has enabled

users to extract semantically relevant data from the
web [12]. The Semantic Web relies heavily on formal
ontologies to structure data for comprehensive and
transportable machine understanding. For the Semantic
Web to be successful, we will need wide-scale availa-
bility of ontologies across many domains [15]. In prac-
tice, building ontology for intelligent systems involves
domain-specific experts’ efforts to manually identify a
set of representational primitives [19] and integrate
them into an ontology system [14,19,20].

2013 IEEE/WIC/ACM International Conferences on Web Intelligence (WI) and Intelligent Agent Technology (IAT)

978-1-4799-2902-3/13 $31.00 © 2013 IEEE

DOI 10.1109/WI-IAT.2013.35

241

B. Ontology Creation/Refinement
To address the ontology creation bottleneck, re-

searchers are exploring ways to reuse ontologies and to
build them using semi-automatic and automatic tech-
niques [20, 21]. Velardi et al. [1] give a comprehensive
overview of approaches for constructing ontologies.
They also introduce a new semi-automatic technique to
build domain ontologies. Speretta et al. [2] present an
automatic technique, which selects appropriate domain
ontologies from the collection of already existing on-
tologies of a given set of documents. Carmel et al. [7]
suggests, selecting appropriate domain ontology and
refine the ontologies based on document collection.

In [6], Carvalheria et al. provide a method for the
semi-automatic construction of ontologies using texts
of any domain for the extraction of classes and rela-
tions. By comparing the relative frequency of terms in
the text with their typical, expected use, the method
identifies classes and relations; they then represent the
corresponding ontology using OWL so that it can be
used by other applications.

Researchers working on the creation or expansion
of ontologies need an evaluation technique to measure
the quality of the created ontology. According to Fang
et al. [9], the quality of formal ontology requires both a
good conceptualization of a domain and a good speci-
fication of the conceptualization. They suggest that the
terminology and the structure of the ontologies also
need to be evaluated.

C. Cluster Labeling
 Cluster labeling is a process of extracting unique

features or descriptors to represent a cluster of topical-
ly related documents. [13, 17] review the performance
of a variety of automatic labeling methods. Their re-
sults show that differential labeling outperforms clus-
ter-internal labeling and hybrid methods.

The most common cluster descriptors are either
concise labels or lists of terms and phrases. For exam-
ple, Geraci et al. [3] describe ARMIL, a meta-search
engine that groups into unique labeled clusters. Their
cluster generation is done by the furthest-point-first
algorithm, an approximation of k-center clustering, and
the labeling is considered as a combination of intra-
cluster and inter-cluster term extraction.

 Carmel et al. [7] also describes a general frame-
work for cluster labeling that extracts cluster labels
from Wikipedia. They suggest extracting most im-
portant keywords or bigrams from clusters that are then
presented as queries to search engine to retrieve rele-
vant Wiki pages. The resulting topics or related terms
associated with those Wiki pages are selected as labels
for the clusters. Similarly, a machine-readable diction-
ary that is organized conceptually can also be used for
labeling [14].

III. ONTOLOGY EXPANSION
In this section we discuss our ontology expansion

approach in detail. As many researchers suggest, we
start with an appropriate domain ontology relevant to
our document collection in CiteSeerX. We choose
ACM’s Computing Classification System (CCS) [10], a
3-level deep ontology that classifies scientific papers;
then we will expand only those CCS classes that are
growing rapidly and/or contain thousands of docu-
ments. For example, Network Protocols (C.2.2) is a
class in the CCS, that has been extensively studied and
it contains papers describing over 70 protocols for the
various layers of the OSI model. It continues to grow
dynamically as more and more documents are pub-
lished. The current CiteSeerx corpus contains more
than 2762 documents related to this topic. Browsing
through all of the documents in this class to locate
those relevant to a particular protocol would be a time
consuming task for users. It, and other classes with
many associated documents, need to be split into sub-
classes for effective browsing, partitioning the docu-
ments into smaller, more cohesive clusters.

Fig 1. Ontology Expansion Model

A. Document classification
Only 2.6% percent of the CiteSeerX corpus is tagged

with classes from ACM’s CCS. To associate the rest
of the documents with CCS classes, we used a k-
nearest-neighbors (kNN) classifier [16] previously
built as part of the KeyConcept [5] project. The au-
thor-tagged documents were collected and used as
training documents for the classifier. The untagged
documents were then compared to the training docu-
ments based on their vocabulary and classified into the
best matching class.

Class
Labeling

CiteSeerX

Database

k-NN
Classifier

Classified
Documents

Subclass
Identification/
Generation

ACM
 Taxonomy

Re-classified
Documents

Expanded
Ontology

New Ontology

242

As discussed earlier, the large number of published
documents available means that too many documents
are classified into the same class, making the existing
CCS unsuitable for a browsing interface for CiteSeerX.
Therefore, we need to divide large classes into sub-
classes to enhance browsing system. Based on the re-
sults of Nanhong et al. [4], we use the Direct clustering
algorithm implemented in Cluto [11, 18] to expand the
existing 3-level deep CCS ontology into a 4-level deep
ontology. In contrast to the repeated bisection method,
the k-clustering solution is computed by simultaneous-
ly finding all k-clusters. The results of [4] on CiteSeerX
collections shows “Direct algorithm” has the mini-
mum entropy and maximum purity compared to other
algorithms in Cluto.

B. Labeling Subclasses
After clustering, the next task is to append these

clusters as subclasses in ontology, requiring labels to
appropriately describe the documents classified into
them. Hence, our primary goal is to assign concise
labels to subclasses as if they were manually assigned.
As a first step to this process, we perform part-of-
speech tagging on the document content, allowing us
to focus our text mining for labels on nouns, the most
common part of speech used for class labels.

There are two primarily features considered by our
class label text miner: the frequency of the word within
a cluster and distribution of word occurrences across
the sibling clusters. In the next section, we discuss
three different label-weighting methods we developed
and evaluated to label subclasses.

C. Label-weighting Methods
We present three label-weighting methods, our base-
line and two novel methods that we will evaluate in the
next section.

TFIDFic:
This is one of the classic formulae commonly used

by the information retrieval community. TFIDF stands
for term frequency–inverse document frequency, a
measure that calculates the importance of a word as a
descriptor of document contents based the word's fre-
quency within the document and its frequency of oc-
currence in all documents in the corpus. Treeratpituk et
al. [8] calculates !"#$"!" as follows:

!"#$"!" = !"!" ∗ log
!"
!"!

where !"!", is the frequency of word i in cluster c,
!"! represents the number of clusters in which word i
appears, and NC is the total number of clusters. The
log of NC/DFi is the classic inverse document frequen-
cy measure. A word with high TFIDF value is ex-
pected to be more important to the cluster and thus be a

good cluster descriptor. Because of its widespread use,
we chose TFIDF as our baseline for label selection.

DeltaTFic:
This method is our first novel method. It simply

identifies terms that appear much more frequently in
the current cluster as compared to other clusters. More
formally, DeltaTFic is a frequency of term i in cluster c
calculated as minus the average term frequency of i in
rest of the sibling clusters. Computationally this is very
inexpensive and quite scalable.

!"#$%&'!" = !"!" −
!"!!!!!∈ {!!!}

!" − 1

where !"!", is the frequency of word i in cluster c,

and NC is the total number of clusters

TFStDevic:

This is a novel approach uses the same TF metric as

the first method but, rather than using inverse docu-
ment frequency to capture the term distribution across
clusters, it uses standard deviation. Standard deviation
is a widely used statistical metric that measures the
variation of a particular data point from the sample
mean. In labeling subclasses, this metric is applied to
locate words that occur in one cluster more frequently
than would be statistically expected. These statistically
surprising words are then selected as class labels.

!"#$%&'!" = !"!" ∗ !"#$%#&% !"#$%&$'(!" !"#!

where relative term frequency, !"#! =

!"!"
!

, the
term frequency in cluster c, normalized by the cluster
size |c|, the number of term occurrences within the
cluster. Note, we also evaluated using the standard
deviation of TF in this formula, but it did not perform
as well, so it is not discussed further.

EVALUATION
The previous section provides automated ontology

expansion technique and labeling methods. Now, we
carry out our experiments to examine how each of the-
se methods performs in ontology expansion and label-
ing.

A. Data Set:
As mentioned earlier, we are using ACM’s CCS on-

tology for our CiteSeerX collection. CCS contains 369
classes organized in a 3-level deep hierarchy. Opera-
tionally, we want to label the level-4 clusters produced
by Cluto. However, in order to evaluate our labeling
algorithms, we need to compare the labeling results in

243

clusters whose true names are known. Thus, we select
20 level-2 classes and select all the human classified
level-3 subclasses of these classes. There were a total
of 150 level-3 classes in our test set.

 We compare our automatically extracted labels
with those manually assigned as part of the CCS to see
how well our text mining approach matches the true
class names. For each selected class, we randomly
choose 100 documents and generated labels for them
using our aforementioned algorithms.

B. Labeling Evaluation:
To evaluate labeling of clusters, we need to com-

pare the results produced with human assigned titles.
We consider the highest-weighted 3 labels produced by
different algorithms. Each of these labels is compared
with human assigned titles. We evaluate the quality of
labeling method with the F-measure described in [4]
that combines precision and recall together into a sin-
gle metric. Precision calculates the percentage of ex-
tracted labels that are the same as the true human-
assigned labels. It essentially measures the accuracy of
the extracted labels.

!"#$%&%'(=
!!

!
!!!

!

where !! = 1 if the ith label occurs within the actual
titles. !! = 0 if the ith label does not match with user
assigned titles, and ! is the number of labels extracted
using that algorithm. In contrast, recall calculates the
percentage of the human-assigned labels found by the
text mining approach. It essentially measures how
comprehensive the extracted labels are.

!"#$%% =
!!

!
!!!

!

Where ! is the number of keywords in human as-
signed titles.

Using precision and recall, described above, F-
Score is defined as,

!"#$%& =
2 ∗ !"#$%&%'(∗ !"#$%%
(!"#$%&%'(+ !"#$%%)

In order to select the best labeling algorithm, we

evaluate the performance of the algorithms in Section
3.2 in terms of precision, recall, and F-Score.

TABLE I. ACCURACY COMPARISON OF THE LABEL
EXTRACTION ALGORITHMS

 Precision Recall F-
Score

Min TFIDF 0.08 0.14 0.11
DeltaTF 0.17 0.21 0.17

TFStDev 0.22 0.42 0.32

Avg
TFIDF 0.18 0.26 0.20
DeltaTF 0.36 0.46 0.41
TFStDev 0.47 0.56 0.55

Max
TFIDF 0.33 0.40 0.36
DeltaTF 0.57 0.60 0.73
TFStDev 0.67 1.00 0.75

Table 1 shows minimum, maximum and average

values for precision, recall and FScore for each label-
ing algorithm. From the results, we can see that Del-
taTF and TFStDev both produced better results than
the TFIDF baseline. The FScore for DeltaTF was dou-
ble that of the TFIDF, and TFStDev was almost triple.
Of all three methods, TFStDev was by far the best.

To improve our understanding, consider the 6 level-
3 children of the class “Logic programming”. TFIDF
produced “xsb; program; thread” as top three results
out of which no terms match the actual titles. DeltaTF
outputs “logic; case; example” as the top three labels
for this cluster of which “logic” matches with the title
but the remaining labels are unique. TF-STDev deter-
mined “logic; program; constraints” as top three re-
sults of which two match the original title terms, the
maximum possible since the title only had two terms.

TABLE II. RESULTS OF DIFFERENT METHODS FOR LEVEL2
CLASS “PROGRAMMING TECHNIQUES”

CCS Class TFIDF DeltaTF TFStDev

Automatic
programming

gpf program partial
tag partial program

program static static
Applicative
(functional)

programming

procedure type functional
reg haskell procedure

stream procedure type

Object–oriented
programming

system class class
object method object

language object program

Concurrent
programming

actor event concurrent
event concurrent event

time synchronization synchroniza-
tion

Logic
programming

xsb logic logic
program case program

thread example constraints

Visual
programming

user user user
visualizer menu program
cicsplex interface system

From the results we can see that, although all algo-

rithms produce good results, the TFStDev labels over-
lap the true class names more often. We also observe
that, the label “program” has appeared as high

244

weighted term for four subclasses when using TFStDev
even though that label is most commonly occurring
term in all the classes. However, the word "program-
ming" also occurs in many of the human-assigned class
names as well.

IV. CONCLUSION
Stimulated by the need for a more comprehensive

browsing interface for CiteSeerX, we have developed
automatic dynamic ontology expansion technique. In
this work, we focus on a new approach for labeling the
new subclasses and evaluated our approach with exist-
ing CiteSeerX class labels. In particular, we compared
the TFIDF, DeltaTF, and TFStDev methods on a set of
150 level-3 classes. Based on our results, we found
that the TFStDev method performed the best. On av-
erage, it produced an average F-score of 55%. It sug-
gested roughly half the words that were contained in
human-assigned class labels and half of the labels it
suggested were indeed in the class names.

Our future work will focus extending the work for
to include noun phrases rather than single terms. We
will also deploy our work on the CiteSeerX site and
evaluate the quality of our labels on subclasses created
by our clustering techniques. These classes are likely to
contain noisier collections of documents than those
classes created manually so it will be important to see
how well the methods work in practice.

V. ACKNOWLEDGEMENTS
This research is partially supported by the NSF

grant number 0958123 - Collaborative Research:
CIADDO-EN: Semantic CiteSeerX.

REFERENCES

[1] P. Velardi, A. Cucchiarelli, and M. Petit, “A Taxonomy

Learning Method and Its Application to Characterize a
Scientific Web Community”, IEEE Transactions on Knowledge
and Data Engineering, 19 (2), Feb. 2007, pp. 180-191.

[2] M. Speretta, S. Gauch, “Automatic Ontology Identification for
Reuse”, International Conference on Web Intelligence, Nov.
2007, pp. 419-422.

[3] F. Geraci, M. Pellegrini, M. Maggini, “Cluster Generation and
Cluster Labelling for Web Snippets: A Fast and Accurate
Hierarchical Solution”, Proceedings of the 13th international
conference on String Processing and Information Retrieval,
Glasgow, UK, 2006, pp. 25-36.

[4] Y. Nanhong, S. Gauch, Q. Wang, H. Luong, “An Adaptive
Ontology based Hierarchical Browsing System for CiteSeerx”,
The Second International Conference on Knowledge and
Systems Engineering, Hanoi, Vietnam, October 7-9, 2010, pp.
203-208.

[5] S. Gauch, D. Ravindran, A. Chandramouli, “KeyConcept:
Conceptual Search and Pruning Exploiting Concept

Relationships”, Journal of Intelligent Systems, 19 (3), Sept.
2010, pp. 265-288.

[6] L. C. C. Carvalheria, E. Satoshi, “A method for semi-automatic
creation of ontologies based on texts”, Proceedings of the 2007
conference on Advances in conceptual modeling: foundations
and applications, Auckland, New Zealand, 2007, pp. 150-159.

[7] D. Carmel, H. Roitman, and N. Zwerdling, “Enhancing cluster
labeling using Wikipedia,” Proceedings of the 32nd
international ACM SIGIR conference on Research and
development in information retrieval, New York, USA, 2009,
pp. 139-146.

[8] P. Treeratpituk, and J. Callan, “Automatically Labeling
Hierarchical Clusters,” Proceedings of the 2006 national
conference on Digital government research, San Diego, USA,
2006, pp. 167–176.

[9] J. Evermann, J. Fang, “Evaluating ontologies: Towards a
cognitive measure of quality,” Information System, Elsevier
Science Ltd., 35(4), 2010, pp. 391-403.

[10] ACM Classification System (CCS), 1998, [Online]. Available:
http://www.acm.org/about/class/1998.

[11] G. Karypis, Cluto: Software for Clustering High-Dimensional
Datasets, 2008, [Online]. Available: http://glaros.dtc.umn.edu
/gkhome/cluto/cluto/download.

[12] M. Bhatt, A. Flahive, C. Wouters, W. Rahayu, D. Taniar, and
T. Dillon, “A Distributed Approach to SubOntology
Extraction”, Proceedings of the 18th International Conference
on Advanced Information Networking and Applications –
Volume 2, IEEE Computer Society, Washington, DC, USA,
2004, pp. 636-.

[13] N. Niu, S. Reddivari, et al., “Automatic Labeling of Software
Requirements Clusters”, 4th International Workshop on
Search-Driven Development, 2012, pp. 17-20.

[14] F. Fumiyo, Y. Suzuki, “Cluster Labeling Based on Concepts in
a Machine-Readable Dictionary,” Proceedings of 5th
International Joint Conference on Natural Language
Processing, Nov. 2011, pp. 1371-1375.

[15] A. Maedche, S. Staab, “Ontology learning for the Sematic
Web”, IEEE Intelligent Systems, IEEE, 16(2), 2001, pp. 72-79.

[16] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko, R.
Silverman, and A. Y. Wu, “An Efficient k-Means Clustering
Algorithm: Analysis and Implementation”, IEEE Trans. Pattern
Analysis and Machine Intelligence, 24(7), 2002, pp. 881-892.

[17] P. Pantel, and D. Ravichandran, “Automatically Labeling
Semantic Classes”. In Proceedings of the Human Language
Technology and North American Chapter of the Association
for Computational Linguistics Conference, 2004, pp. 321-328.

[18] Y. Zhao, and G. Karypis, “Empirical and Theoretical
Comparisons of Selected Criterion Functions for Document
Clustering”. Machine Learning, 55(3), 2004, pp. 311-331.

[19] D. Haverkamp, and S. Gauch, “Intelligent Information Agents:
Review and Challenges for Distributed Information Sources”,
Journal of the Society for Information Science, 49(4), April
1998, pp. 304-311.

[20] A. Deitel, C. Faron, and R. Dieng, “Learning Ontologies from
RDF annotations”. In proceedings of IJCAI Workshop in
ontology learning, Seattle, USA, 2001.

[21] OWL Web Ontology Language (2004), W3C
Recommendation, 10 February 2004, [Online]. Available:
http://www.w3.org/TR/owl-features/.

[22] Berners-Lee, Tim; James Hendler and Ora Lassila (May 17,
2001). "The Semantic Web". Scientific American Magazine.
Retrieved March 26, 2008.

245

