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ABSTRACT
Remote sighted assistance (RSA) has emerged as a conversational
assistive technology for people with visual impairments (VI), where
remote sighted agents provide realtime navigational assistance to
users with visual impairments via video-chat-like communication.
In this paper, we conducted a literature review and interviewed 12
RSA users to comprehensively understand technical and naviga-
tional challenges in RSA for both the agents and users. Technical
challenges are organized into four categories: agents’ difficulties in
orienting and localizing the users; acquiring the users’ surroundings
and detecting obstacles; delivering information and understanding
user-specific situations; and copingwith a poor network connection.
Navigational challenges are presented in 15 real-world scenarios
(8 outdoor, 7 indoor) for the users. Prior work indicates that com-
puter vision (CV) technologies, especially interactive 3D maps and
realtime localization, can address a subset of these challenges. How-
ever, we argue that addressing the full spectrum of these challenges
warrants new development in Human-CV collaboration, which we
formalize as five emerging problems: making object recognition and
obstacle avoidance algorithms blind-aware; localizing users under
poor networks; recognizing digital content on LCD screens; rec-
ognizing texts on irregular surfaces; and predicting the trajectory
of out-of-frame pedestrians or objects. Addressing these problems
can advance computer vision research and usher into the next
generation of RSA service.

CCS CONCEPTS
• Human-centered computing → Empirical studies in HCI;
Collaborative interaction; • Computing methodologies→ Com-
puter vision problems.
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1 INTRODUCTION
Remote sighted assistance (RSA) has emerged as a conversational
assistive technology for people with visual impairments (PVI) [74].
In RSA paradigms, a user with vision impairment uses their smart-
phones to establishes a video connection with a remote sighted
assistant, namely, an RSA agent or simply an agent, who then inter-
prets the video feed coming from the user’s smartphone camera,
while conversing with the user to provide assistance as needed or re-
quested. Recently, a number of RSA services came out of academia,
e.g., VizWiz [19], BeSpecular [61], Crowdviz [60], as well as of
industry, e.g., TapTapSee [109], BeMyEyes [17], Aira [8].

Historically, RSA services have been developed based on users’
needs and feedback in multiple trials [16, 27, 70, 91, 104]. The com-
munication in early RSA services was unidirectional, i.e., from
agents to users, and the scope was narrow (e.g., agents describe ob-
jects in static images). As these services have matured over time and
gained popularity, both agents and users adopted new technologies,
such as smartphones, two-way audio/text conversation, realtime
camera feed, GPS, and Google Maps. As a result, the current RSA
services have broadened the scope in achieving complex tasks, such
as agents assisting PVI in navigating airports and crossing noisy
intersections without veering.

With the increased task complexity, researchers [65, 74] have
identified that reliance on smartphones’ camera feed can be a limit-
ing factor for the agents, affecting their performance and mental
workload, which can subsequently degrade the user experience of
PVI. To elaborate, Kamikubo et al. [65] and Lee et al. [74], who
studied RSA services, reported several challenges for agents, such
as agents’ lack of confidence due to unfamiliarity with PVI’s phys-
ical surroundings, lack of indoor maps with fine details, inability
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to track the PVI continuously on static maps, difficulty in estimat-
ing objects’ distances in the camera feed, and describing relevant
objects or obstacles in realtime. However, these challenges are de-
rived from the agents’ perspective, largely overlooking the user
experience of people with vision impairments who are the true
users of RSA services. As such, the findings in prior work are likely
to be incomplete. This paper draws on prior work to holistically
understand the technical and navigational challenges in RSA from
both the agents’ and the users’ perspectives. More specifically, we
aimed at understanding two research questions: What makes re-
mote sighted assistance challenging? When this assistance becomes
challenging to use?

To that end, we employed two methodologies. First, we con-
ducted a literature review to identify technical challenges in RSA
services, which are mostly derived from the agents’ point of view.
Second, we conducted an interview study with 12 visually impaired
participants who use RSA services, in order to understand naviga-
tional challenges from their standpoint. Based on these two studies,
we then constructed an exhaustive list of technical and navigational
challenges to expand prior work and outline how these challenges
occur in different real-world navigation scenarios.

We organized technical challenges into four broad categories:
agents’ difficulty orienting and localizing the users; acquiring the
users’ surroundings and detecting obstacles; delivering information
and understanding user-specific situations; and coping with a poor
network connection and external issues. Additionally, we produced
a list of 15 real-world scenarios (8 outdoor, 7 indoor) that are chal-
lenging for PVI to navigate. A sampler of these scenarios include
taking a walk around a familiar area (e.g., park, campus); calling a
ride-share and going to the pick-up location; navigating through
parking lots or construction sites; finding trash cans or vending
machines; navigating malls, hotels, airports, train platforms; and
finding an empty seat in theaters or an empty table in restaurants.

Because many of our identified challenges are well-researched
in computer vision (CV) and AI literature, we investigated whether
CV-based techniques can assist RSA agents in our prior work [120].
Our prior work suggests that having 3D maps of the users’ sur-
roundings and the ability to continuously localize users on the maps
can benefit RSA agents in addressing a subset of those challenges.
Complementary to our prior findings, a deeper analysis presented
in this paper reveals that some challenges in RSA are too complex
and dynamic to be addressed by CV-based automated approaches,
thereby warranting new development in Human-CV collaboration.
We formalize this prospective development as five emerging prob-
lems in Human-AI collaboration: (1) making object recognition and
obstacle avoidance algorithms blind-aware during navigation; (2)
localizing users under poor networks; (3) recognizing content on
digital displays; (4) recognizing texts on irregular surfaces (e.g.,
curved); and (5) predicting the trajectory of out-of-frame pedes-
trians or objects. We believe our problem formulation will inspire
computer vision and HCI researchers to find new solutions, which
can usher into the next generation of RSA service.

2 BACKGROUND AND RELATEDWORK
2.1 Navigational Aids for People with VI
Navigation is the ability to plan and execute a route to a desired
destination. It is essential to have a spatial representation of users’
surroundings (i.e., digital maps, cognitive maps [113], building lay-
outs), direction information, and continuous update of their lo-
cation in that representation (localization) [94]. Over the last 70
years, researchers proposed many prototypes to aid people with
VI in both outdoor and indoor navigation. In this section, we only
review a subset of such prototypes that are widely used and run on
smartphones (for a chronological review, see Real and Araujo [95]).

Smartphone apps for outdoor navigation rely on GPS sensors
for localization and commercial map services (e.g., Google Map,
OpenStreet Map) for wayfinding. For example, BlindSquare [20],
SeeingEyeGPS [5], Soundscape [107], and Autour [2]. These apps
are feasible to navigate large distances for people with VI by provid-
ing spatial descriptions and turn-by-turn directions through audio.
However, they are not reliable in last-few-meters [101] due to a
wide margin of error in GPS accuracy (±5m [46]).

The weaker GPS signal strength indoor is also a barrier to indoor
navigation. To overcome this limitations, researchers have fused
available smartphone sensors as alternatives for indoor navigation,
such as motion sensors, Bluetooth [103], Infrared [75], NFC [40],
RFID [39], sonar [32], beacon [47] and camera. Lack of sufficiently
detailed indoor map data is the other challenge [76, 99]. To mitigate
this challenge, researchers have proposed to construct indoor maps
by understanding the semantic features of the environment (for a
complete list, see Elmannai and Elleithy [34]). Unfortunately, these
solutions require additional deployment and maintenance effort
to augment the physical environment [44], as well as a significant
bootstrapping cost for setting up databases of floorplan [35] and
structural landmarks [13, 90]. Some solutions also require the users
to carry specialized devices (e.g., an IR tag reader [75]). For these
reasons, no single indoor navigation system is widely deployed.

2.2 RSA Services for People with VI
RSA service is an emerging navigational aid for people with VI [29].
The implementation of various RSA services differs in three key
areas. (i) The communication medium between users and remote
sighted assistants. Earlier prototypes used audio [91], images [19,
70], one-way video using wearable digital cameras [27, 43], or web-
cams [27], whereas the recent ones are using two-way video chat
using smartphones [8, 16, 17, 59]; (ii) The instruction form. RSA
services are based on texts [72], synthetic speech [91], natural
conversation [8, 16, 17], or vibrotactile feedback [30, 104]). (iii) Lo-
calization technique. For example, via GPS-sensor, crowdsourcing
images or videos [19, 71, 94, 125], fusing sensors [94], or using CV
as discussed in the next subsection.

Researchers have studied the crowdsourced and paid RSA ser-
vices. For the crowdsourced RSA services (e.g., TapTapSee [109],
BeMyEyes [17]), researchers concluded that they are feasible to
tackle navigation challenges for people with VI [11, 21]. However,
potential issues in crowdsourced RSA services include that (i) users
trust too much on subjective information provided by crowdwork-
ers, and (ii) crowdworkers are not available at times [28]. Compared
with the crowdsourced RSA services, Nguyen et al. [88] and Lee at
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al. [74] reported that assistants of paid RSA services (e.g., Aira [8])
are trained in communication terminology and etiquette, which
means they do not provide subjective information. Furthermore,
they are always available. In this paper, we assume Aira or a similar
RSA service exists to demonstrate our design.

2.3 Use of CV in Navigation for People with VI
Budrionis et al. [26] reported that CV-based navigation apps on
smartphones are a cost-effective solution. Researchers have pro-
posed several CV-based positioning and navigation systems through
recognizing landmark (e.g., storefronts [101]) or processing of tags
(e.g., barcodes [75, 110], QR codes [33, 68], color markers [80] and
RFID [81]). CV techniques have also been applied to obstacle avoid-
ance [67, 93], which ensures users to move safely during the nav-
igation without running into objects. However, Saha et al. [101]
who studied the last-few-meters wayfinding challenge for people
with VI, concluded that for a deployable level of accuracy, using
CV techniques alone is not sufficient yet. Our goal in this project
is to use CV to assist sighted assistants (e.g., RSA agents), rather
than people with VI, who could be vulnerable to inaccuracies of
CV systems.

Another line of work is to develop autonomous location-aware
pedestrian navigation systems. These systems combine CVwith spe-
cialized hardware (e.g., wearable CV device [78] and suitcase [48]),
and support collision avoidance. While these systems have ex-
panded opportunities to receive navigation and wayfinding infor-
mation, their real-world adaptability is still questionable, as Banovic
et al. [14] commented that navigation environments in real-world
are dynamic and ever-changing.

Lately, researchers are exploring the feasibility of augmented
reality (AR) toolkit in indoor navigation, which is built into modern
smartphones (e.g., ARKit [3] in iOS devices, ARCore [1] in Android
devices). Yoon et al. [123] demonstrated the potential of construct-
ing indoor 3D maps using ARKit and localizing users with VI on
3D maps with acceptable accuracy. Troncoso Aldas et al. [112] pro-
posed an ARKit-based mobile application to help people with VI
recognize and localize objects. Researchers found that AR-based
navigation systems have the advantage of (i) a widespread deploy-
ment [98], (ii) providing a better user experience than traditional
2D maps [114], and (iii) freeing users’ hands without the need of
pointing the camera towards an object or a sign for recognition [37].

More recently, we explored the opportunity of utilizing computer
vision technologies to assist sighted agents instead of users with
VI [120]. We designed several use scenarios and low-fidelity proto-
types and had them reviewed with professional RSA agents. Our
findings suggested that a CV-mediated RSA service can augment
and extend the agents’ vision in different dimensions, enabling
them to see further spatially and predictably, as well as keeping
them stay ahead of the users to manage possible risks. This pa-
per complements those findings by identifying situations where
leveraging CV alone is not feasible to assist sighted assistants.

2.4 Collaboration between Human and AI
Despite recent advancements of CV, automatic scene understanding
from video streams and 3D reconstruction remain challenging [87].

Factors, such as motion blur, image resolution, noise, illumina-
tions variations, scale, and orientation, impact the performance
and accuracy of existing systems [64, 87]. To overcome these chal-
lenges, researchers have proposed interactive, hybrid approaches
that involve human-AI collaboration [22]. One representative of the
approach is the human-in-the-loop framework. Branson et al. [23]
incorporated human responses to increase the visual recognition
accuracy. Meanwhile, they found that CV reduced the amount of
human effort required. Similarly, researchers developed interactive
3D modeling in which humans draw simple outlines [106] or scrib-
bles [69] to guide the process. They increased the accuracy of 3D
reconstructions while considerably reducing the human effort.

Collaborative 2D map construction and annotation is the other
example of Human-AI collaboration, where AI integrates and veri-
fies human inputs. Systems have been developed for collaborative
outdoor map construction (e.g., OpenStreetMap [4]) and indoor
one (e.g., CrowdInside [10], SAMS [92], and CrowdMap [31]). Re-
searchers also probed the use of collaborative 2D map construction
and annotation in supporting navigational tasks for people with VI.
For example, improving public transit [53] and sidewalk [83, 102]
accessibility, and providing rich information about intersection
geometry [52]. Guy and Truong [52] indicated that collaborative
annotations represent information requested by users with VI and
compensate for information not available in current open databases.

Although prior work supports the technological feasibility of
collaborative mapping and annotation, the motivation and incen-
tives of volunteers have been a concern surrounding collaborative
map construction. Budhathoki and Haythornthwaite indicated that
volunteers can be motivated by intrinsic (e.g., self-efficacy and
altruism) or extrinsic (e.g., monetary return and social relations)
factors. In contrast, all volunteers are equally motivated in terms
of a personal need for map data [25].

3 IDENTIFYING NAVIGATION CHALLENGES
IN RSA: LITERATURE REVIEW

We aimed to understand the navigation challenges in RSA from two
different perspectives, namely, the agents’ and users’ perspectives.
This section presents a literature review that produces a list of such
challenges from the agents’ perspective.

We used Google Scholar (GS) to create an initial corpus contain-
ing papers from diverse sources. First, we defined a list of phrases
specific to remote assistance for people with VI. More specifically,
we considered these phrases: “visual impairment teleassistance”,
“visual impairment tele-guidance”, “visual impairment remote guid-
ance”, “visual impairment O&M remote”, “visual impairment O&M
remote video”, “visual impairment remote assistance”, and “visual
impairment remote sighted assistance”.

We scraped top-10 search results returned by GS for each phrase
– totaling 70 papers for all phrases. We restricted to top-10 results
because we observed that (i) these results appeared on the first page
of GS, indicating their high relevance, and (ii) results on subsequent
pages were either less relevant or repetitive when used a different
phrase from our list. We then sorted papers by their recentness and
the reputation of their publication venues (e.g., recent papers in
CHI, ASSETS came up first). Even though we enforced a restriction
on the number of search results, we observedmany duplicates. Next,



IUI ’22, March 22–25, 2022, Helsinki, Finland Lee, Yu, Xie, Billah, and Carroll

after removing duplicates, two authors manually reviewed each
paper’s title, abstract, and introduction in the sorted corpus. They
additionally removed papers unrelated to remote assistance, sighted
assistance, remote assistant systems, and navigation systems for
people with VI. This process narrowed down the number of papers
from 70 to 35.

The same two authors read those 35 papers thoroughly. Then,
they further excluded 15 papers from the corpus because (i) those
papers studied the usability of remote sighted assistance (RSA) sys-
tem for image description, grocery shopping, and object detection;
or (ii) those papers investigated the impact of RSA system in im-
proving the quality of life of people with VI, discussed the privacy
concern in RSA; or (iii) those papers focused on improving the inter-
faces or functionality of RSA system; or (iv) those papers focused on
the feasibility of RSA system in navigation tasks (e.g., some papers
used the word wayfinding or mobility) but did not reveal related
challenges or requirements. Finally, the corpus included 20 papers
for further analysis.

Three authors cross-checked the analysis to confirm that identi-
fied challenges are extracted from the literature and do not exceed
the context. Table 1 summarizes these challenges. Below, we de-
scribe the relevant literature from where individual challenges are
drawn.

3.1 Challenges in Localization and Orientation
One of the biggest challenges identified for the RSA agent is local-
izing the user and orienting the agent themselves. For this task, the
agent mainly depend on the two sources of information - users’
live video feed and GPS location. The agents put them together
to localize the users on a digital map on their dashboard [16, 74].
However, the agents frequently got confused to perceive which
direction the user is facing from the user’s camera feed and GPS
location [27, 43, 65]. The trained agents who participated in prior
study [65] also reported losing users’ current location is a hard
problem. RSA agent’s lack of environmental knowledge and their
unfamiliarity of the area, scarce and limitation of the map, and
inaccuracy of GPS found to be main causes for the location and
orientation related challenges.

3.1.1 Unfamiliarity of environment. In previous study [73], the
RSA agents expressed their frustrations with the users’ expectation
of the agents’ quick start of assistance, which is usually not possible
because most of places are new to the agents and thus they need
some time to process the information to orient themselves. The fact
that RSA agents’ never being in the place physically but depending
only on the limited map and the video feed is reported as a cause
for the challenge in the following research work [43, 59, 65].

3.1.2 Scarcity and limitation of maps. Lee et al. [74] reported that
RSA agents primarily use Google maps for outdoor spaces, and they
perform Google search to find maps for indoor places. RSA agents
who participated in Lee et al.’s study [74] reported that coarse or
poor maps of malls or buildings limit their ability to assist the users.
They also stated that many public places either have no maps or
have maps with insufficient details, which forces them to rely on an-
other sighted individual in close proximity of the user for assistance.
Sometimes, agents must orient the users using their camera feeds

only [43, 74], which makes the challenges worse. Navigating com-
plex indoor layout is one of the well-established challenges in pedes-
trian navigation, as reported by many researchers [47, 65, 86, 94].

3.1.3 Inaccurate GPS. In addition to the insufficient map problem,
inaccurate GPS was recognized as another major cause. Field trials
of RSA system [16] revealed that the largest orientation and local-
ization errors occurred in the vicinity of a tall university building
where GPS was inaccurate. Researchers [43] indicated that GPS sig-
nal reception was degraded or even blocked around tall buildings.
In terms of the last-few-meters navigation, they illustrated that
GPS was not accurate enough to determine whether the user was
walking on the pavement or the adjacent road in some situations.
The well known last 10 meters and yard problem [101] in the blind
navigation is also caused by the GPS inaccuracy.

3.2 Challenges in Obstacle and Surrounding
Information Acquirement and Detection

The second notable challenges that the agents face occur in their
obtaining the information of obstacles and surroundings. RSA
agents need to detect obstacles vertically from ground level to head
height, and horizontally along the body width [43, 62, 91]. They
also need to provide information about dynamic obstacles (e.g.,
moving cars and pedestrians) and stationary ones (e.g., parked cars
and tree branches) [16, 62]. However, agents found these tasks
daunting due to the difficulties in estimating the distance and
depth [65], reading signage and texts [59], and detecting/tracking
moving objects [59, 62] from the users’ camera feed. Number of
research work also found that it is almost impossible for agents
to project/estimate out-of-frame potential either moving or static
obstacles [16, 27, 43, 62, 65, 91, 104]. Researchers [14] described
that navigation environments in the real world are dynamic and
ever-changing. Thus, it is easier for agents to detect obstacles and
provide details when users are stationary or moving slowly [59].
Two main causes are linked with aforementioned problems: 1) lim-
ited field of view of the camera; 2) limitation of using video feed.

3.2.1 Narrow View of the Camera. Prior research found that the
camera in use had a relatively limited viewing angle of around
50◦, compare to the angle of human vision that is up to 180◦ [27].
Researchers [62, 104] mentioned that the camera should be located
appropriately to maximize vision stability along the path. Limited
field of camera view affects RSA negatively in their guiding perfor-
mance [63, 65].

3.2.2 Limitation of using video feed. The quality of the video feed
that matters to the RSA is the steadiness and clearness. The video
stream easily affected by the motion of the camera (e.g., handheld
mobile device or glasses) and becomes unstable. It is reported that
agents are more likely to experience motion sickness when the
users are not holding the camera (e.g., smartphone hanging around
the user’s neck) [59]. To mitigate the challenges of reading signage
and texts in the user’s camera feed, researchers [27] demonstrated
the necessity of enhancing the quality of the video stream. Smooth
frame rate and high resolution are essential when agents read signs,
numbers, or names. The quality of the video stream can affect the
performance of RSA in hazard recognition [41, 42], and thus it is
considered as one of themain factors determining the safety of blind
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Challenges in RSA
Problems Causes Needs for Design Space
G1. Orientation and Localization

(1) Scarcity of indoor map [65, 74, 86, 94]
(2) Unable to localize the user in the map in real
time [16, 43, 74, 86]
(3) Difficulty in orienting the user in his or her current
surroundings [27, 43, 94]
(4) Lack of landmarks or annotations on the
map [14, 74]
(5) Outdated landmarks on the map [14, 74]
(6) Unable to change scale or resolution in indoor
maps [74]
(7) Last-few-meters navigation (e.g., Guiding the user
to the final destination) [86, 101]

(1) RSA agent’s lack of
environmental knowledge (e.g., the
agent is not familiar with the
surroundings of the blind
user) [43, 59, 65]
(2) Scarcity of maps and Limitations
of using maps
(3) Inaccuracy of GPS

(1) Detailed map of indoor and
outdoor
(2) Improved interactivity of the map

G2. Obstacle and Surrounding Information Acquirement and Detection

(1) Difficulty in reading signages and texts in the
user’s camera feed [59]
(2) Difficulty in estimating the depth from the user’s
camera feed and in conveying distance
information [65]
(3) Difficulty in detecting and tracking moving objects
(e.g., cars and pedestrians) [59, 62]
(4) Unable to project or estimate out-of-frame objects,
people, or obstacles from the user’s camera
feed [16, 27, 43, 62, 65, 91, 104]
(5) Motion sickness due to unstable camera feed [59]

(1) Limitation of using video feed
(e.g., unstable video stream)
(2) Limited camera field of view;
narrow view of camera

(1) Enhanced and improved camera
field of view and video feed
(2) Augmented visual information on
video feed

G3. Delivering Information and Understanding User Specific Situation

(1) Difficulty in proving various information
(direction, obstacle, and surrounding) in timely
manner [73, 74]
(2) Adjusting the pace and level of detail in
description provision through communication [59, 74]
(3) Cognitive overload

(1) The need of delivery of large
volume of information
(2) Differences in preferences and
various context/situation of users

(1) Information prioritization support
(2) Cognitive load reducing interface
and interaction design
(3) Augmentation of information
with different modality
(4) Collaborative interaction between
the agent and the users

G4. Network and External Issues

(1) Losing connection and low quality of video
feed [30, 43, 59, 62, 65, 74]
(2) Poor quality of the video feed

(1) Weak signal and network in
indoor and some places
(2) Low ambient lighting

(1) Offline map
(2) Camera feed enhancement

Table 1: A list of challenges in RSA service, presented in four groups (G1, G2, G3, and G4).

users [16]. This explains that the task of an intersection crossing
was recognized as one of the most challenging situations for agents
in a navigation aid. RSA agents find it very challenging because it
is difficult to identify traffic flow through the narrow camera view,
poor video quality, and the high speed of vehicles [27, 59, 65].

3.3 Challenges in Delivering Information and
Interacting with Users

In addition to the challenges in the task of obtaining the neces-
sary information, agents informed next set of challenges happened
in delivering the obtained information and interacting with the
users. In previous studies [73, 74], agents revealed the difficulties
in providing various required information (e.g., direction, obstacle,
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and surroundings) in timely manner and prioritizing them, which
requires understanding and communicating with users that creates
further challenges. The agents could also stress out if the users
move faster than they could describe the environment [74]. These
suggest that, in the navigation task, the need of delivery of large vol-
ume of information and simultaneously, the need of quick grasp of
each user’s different situation, need, and preference are main causes
for the challenges. Prior research found that the RSA deal with this
challenges through collaborative interaction/communication with
the users [59, 74].

3.4 Network and External Issues
Early implementations of RSA services suffered from the network
connection and limited cellular bandwidth [43]. Although cellular
connection improved over the years, the problem remains for indoor
navigation [59], which could lead to large delays or breakdowns
of video transmissions [15, 62, 65]. Also an external factor such as
low ambient light condition at night causes the poor quality of the
video feed.

4 IDENTIFYING NAVIGATION CHALLENGES
IN RSA: USER INTERVIEW STUDY

Next, we conducted a semi-structured interview study with 12 visu-
ally impaired RSA users to understand the navigational challenges
from the perspective of RSA users’ experience. In this section, we
report the findings of the users’ experienced challenges, their per-
ceptions of RSA agents’ challenges, and how the challenges on
each side of RSA provider and users are related and affect the RSA
navigation experience.

4.1 Participants: RSA Users with VI
We recruited a total of 12 participants: 8 through RSA service com-
pany, (Aira [8]) and 4 from our prior contacts. All participants were
familiar with free (e.g., BeMyEyes [17]) and paid (e.g., Aira [8])
RSA services. Aira company advertised about our study to their
customers with VI and those who were interested in our study
directly contacted us for participation. Our interviewees (9 female,
3 male) have various levels of visual impairments, and their ages
range from 19 years to 62 years old. On average, they used a paid
RSA service for at least one year. They also use white canes. Their
participation was voluntary, and no compensation was provided.

4.2 Procedure and Data Analysis
The interviews were semi-structured, performed remotely over
phone calls, and lasted between 30 minutes to 60 minutes. The
researcher took an open-ended approach and used the following
questions as an anchor to probe the follow-up questions for a deeper
understanding of the challenges and issues centered on the topic
of navigation. The three categories of the questions included: (i)
identification of common navigation scenarios and the reasons for
the need of RSA service; (ii) challenges that RSA agents faced, as
perceived by the RSA users (interviewees) and the strategies they
used to help the agents; and (iii) scenarios that were challenging
either for them or the agents or both. All interviews were audio-
recorded with the consent of the interviewees and transcribed.With
the transcribed data, we developed a deductive coding framework

with core topics drawn from 3 areas of the interview questions,
whichwe considered high-level categories (e.g., common navigation
scenarios, challenges for RSA users and agents, strategies/help
for the challenges). We used these categories to organize all the
transcribed data. Afterward, 2 researchers independently performed
an iterative inductive analysis [24] on the data and generated codes
(e.g., navigating in a parking lot, finding a trash can), additional
categories (e.g., indoor and outdoor scenarios), and themes (e.g.,
indoor and outdoor specific challenges, lack of maps, unfamiliarity
of environment). All codes and themes were reviewed with the
processes of merging and refining, and final themes were extracted.

4.3 Findings
From the interview study, we identified challenging indoor and
outdoor navigational scenarios from the blind user’s experience
(Table 3). Further we saw that major problems recognized from the
literature review (e.g., the limitations of maps, RSA’s environmental
knowledge, and the camera view and feed) reappear as the main
causes for challenges of the blind users and found that how those
problems affect the users’ navigation experience, and how they
perceive and help the problems on the users’ end.

4.3.1 Common Navigation Scenarios. The most common types of
navigation scenarios that our participants ask RSA agents for help
are traveling and navigating unfamiliar indoor or outdoor places.
Navigating unfamiliar areas where a blind user might utilize RSA
service came up often in our study, which is consistent with litera-
ture [73, 74].

For outdoor navigation, common scenarios include checking and
confirming the location after Uber or Lyft drop-offs; finding an
entrance from a parking lot; taking a walk to a park, coffee shop,
mailbox; navigating in a big college campus; and crossing street.

The common indoor places they called RSA agents for help
were Airport and large buildings (e.g., malls, hotels, grocery stores,
theaters). In an airport, they usually ask RSA agents to find a gate
and baggage claim area. Inside large establishments or buildings,
they ask for finding certain point-of-interest (e.g., shops, customer
service desk); entrance and exit, stairs, escalator, and elevator; and
objects, e.g., vending machine and trash can.

Our data suggest that blind users repeatedly use RSA services to
navigate the same place if its layout is complex (e.g., airports); or
their destination within the place is different (e.g., different stores in
a shoppingmall); or the place is crowded and busy (e.g., restaurants).

4.3.2 Challenging Outdoor Navigation Experiences. It was a recur-
rent theme that if the agents experience challenges, the users also
experience challenges. The interviewees were mostly content with
their outdoor navigation experience with the agent, compared to
that of indoor navigation, even though they realized that some
scenarios were challenging to agents. Examples of such scenarios
include crossing intersections, and finding certain places and loca-
tions (e.g., building entrances, restrooms) in open outdoor spaces
(e.g., parking lots, campus).

Christi commented about the challenge in parking lots: “Parking
lots aren’t fun, even with an Aira agent unless there is a walking path”.
Denise also shared her experience of taking longer than usual time
to find a public restroom in a big open bus stop. She stated that
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Pseudo
name

Gender Age Age of
Onset

Condition of Vision Im-
pairment

Occupation

Calvin M 32 4yrs Legally blind, 20/700, shaky
eyes

Student (Computer science major) /consult-
ing for family and friends, beta testing app

Grace F 19 At birth Total blindness, a little bit
of light perception

Student (special education/ vision major -
dual major)

Karen F 23 12yrs Usable vision in right eye
color, shape

Student (liberal studies major)

Larry M 62 39yrs Total blindness Peer support specialist library social worker
(scholarship plan)

Susan F 27 At birth Glaucoma; light perception
on both eyes

Student/technology instructor

Sally F 25 At birth Total blindness Student (family studies)
Justin M 45 6yrs Total blindness Software tester
Christi F 44 At birth Total blindness, no light per-

ception
Social worker

Denise F 55 At birth Total blindness Counselor
Hanna F 35 At birth Total blindness Student/technical advisor
Kelly F 32 At birth Premature, congenital Student (political science major)
Rachel F 22 At birth Total blindness Student (Special education)

Table 2: Participants’ demographics in our study with RSA users.

frequent incidences of getting to locked doors were very unpleasant
experiences: “Probably the most challenging is if I’m outdoors at a
location and I’m trying to find the door to go into, some doors are
locked”. Larry shared his experience of having incorrect guidance
from the agent that led him to the wrong place. He attributed it to
the mismatch of the map and the real place.

“This kind of frustrated me...for some reason, it wasn’t
matching up with what they[agent] were seeing on their
map. And I guess it wasn’t matching up with what they
were visually seeing. The agent took me on a whole
different path." - Larry

4.3.3 Challenging Indoor Navigation Experiences. All our intervie-
wees commonly mentioned that indoor navigation was more chal-
lenging for them, as well as for the agents. Sally clearly stated that:
“again, it was that indoor navigation that gave them [Aira agents]...an
issue”. Interviewees’ indoor experiences with RSA indicate that it
usually takes much longer for the agent to locate and find in indoor
spaces.

Christi shared her challenging experience of spending about 20
min with a RSA agent only to find a store (“Bath and Body Works”)
from another store in a big mall. She recalled they both got lost and
disoriented in “JC Penny”:

“She [Aira agent] could not get us navigated out of there
at all, like through the store to get to the other part of
the mall.” - Christi

Another interviewee, Rachel, recounted the longest and the most
challenging time she had with an agent when trying to find the
luggage section in a department store, Kohls.

“Eventually [I] locate it but I know I was walking around
in the store [for] a long time ... a lot of back and forth
across the store.” - Rachel

Finding the entrance (or exit) of a building, navigating to a pick-
up point from the interior of a building for meeting the ride-sharing
driver are examples of other challenging experiences that our in-
terviewees shared with the RSA agents. Denise explained what
happened in a big grocery store:

“Kroger has different places that you can go in or out,
and the Uber or Lyft, whatever ride I was taking, let
me out at one entrance, but then they came to pick me
up at a different entrance. ... They did not know which
entrance I came in and which one I was going to go out
of, so that was a challenge.” - Denise

She added frequent incidences of getting to locked doors was
very unpleasant experience: “Probably the most challenging is if I’m
outdoors at a location and I’m trying to find the door to go into, some
doors are locked”. Also, finding a seat in a restaurant or a theatre
looked challenging tasks for RSA to RSA user interviewees.

4.3.4 Users’ Understanding of Problems: Insufficient Maps, RSA’s
Unfamiliarity of Area, and Limited Camera View. All interviewees
mentioned that the absence of maps or floorplan, as well as the
inaccuracy and scarcity in the map, are the primary reasons why
RSA agents struggled to assist them in both indoor and outdoor
places. Justin pointed out this lack of map issue:

". . . The second biggest problem is not being able to find
good maps... Like if I’m in an airport, they can’t always
find a good map of the airport." - Justin

Most interviewees additionally mentioned that the RSA agent’s
unfamiliarity with a place and location is an obvious challenger.
Susan and Larry described this challenge as follows:

“ when you’re walking to a new place, the agent doesn’t
know the campus. ..they have the map and they have
their visual cues from what they’re looking at from your
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end, from your glasses [Aira glasses] or your phone.
But, you know, it’s not like they know the campus. It’s
obviously,..it’s a matter of getting those routes down
and that takes time, because you had to walk in one
direction, walk in another, just to kind of scope out the
route, the one throughout is scoped out." - Susan

“...I am in a store or in a hospital, you know, they don’t
know, where they’re,...they have GoogleMaps, you know,
that’s it. It is a lot of back and forth. But I find that...that
be the case for every, essentially, every new place." -
Larry

Several interviewees’ accounts also suggested that poor and lim-
ited visibility caused by the narrow camera view creates challenges
for the agents. Karen talked about using stairs in her school and
showed her understanding of the agent’s visual challenge caused
by the limited distance that camera feed can show.

“Going down flights of stairs can be a challenge because
the agent can’t see that far down, but that’s when I
totally understand why they say to have our cane at all
times." - Karen

She introduced another visual challenge that the current cam-
era’s capability can’t solve and Calvin’s comment implies the same
issue.

“my college campus we have a lot of stairs that are very
narrow, they’re very like close together and so it’s hard
to tell that they’re actually a staircase so sometimes the
agents don’t see that there’s actually a set of stairs there
because the stairs are so close together." - Karen

"... not sure if [the] sign was blocked or hidden..." - Calvin

4.3.5 Users’ Helping and Collaborating with RSA. The participants
seem to understand the difficulties and situations that the agents
face on their ends and they want to assist the agents and willing
to work with them to mitigate the challenges and complete the
navigation task together.

The story of how Susan collaboratively worked with the agent
and created a map that accommodates her specific needs and how
it helps both her and the agent every time she is connected with
the agent was impressive and intriguing.

“I recreated the map. the map was on Google, and then
instructions for the map. So in the Aira folder, I have
a map of my college. So I have routes in there that
Aira and I have done, Aira agents and I have done
together. There have been instructions for each route, so
they’ve marked off the map, and they’ve also written
instructions on with the route... they can see exactly
where I am...they quite easily get me on the path where
I needed to go. So that’s been really helpful on getting
me around the campus." - Susan

Karen and Grace shared what she usually do to help the agent
get a better view of the video feed for the direction and distance on
their end. Karen said She pays attention to positioning the phone
in the right way so the agent can see where they need to see.

Grace tried to enhance the view by adjusting the distance.

“When I’m calling an agent, I would hold the phone so
that my finger isn’t blocking the camera and try to keep
it kind of farther away from the object so they can get
a better view of it." - Grace

The participants also mentioned that a common workaround
that RSA agents use in challenging scenarios is to find a dependable
sighted person, such as an employee with a uniform or someone in
the helpdesk, who could help them quickly. A similar finding was
also reported by Lee et al. [74].

5 DISCUSSION: ADDRESSING RSA
CHALLENGES

The findings showed that the interviews with the blind RSA users
echoed the challenges and difficulties identified from the literature
review. In this section, we discuss the potential of the existing CV
technology for addressing those challenges, specifically with the 3D
map created through a framework of human-AI collaboration and
how much of the problems could be mitigated with those potential
technological solutions. In the following sections, we present how
existing CV-based techniques can be used to address a subset of
challenges listed in Table 1.

A fundamental challenge for RSA is the lack of situation aware-
ness for the user’s surroundings. Traditionally, this is mitigated by
providing the sighted agents with a live camera feed and a map (e.g.,
Google Maps). However, these traditional means have shortcom-
ings. Further, navigation is a teamwork-based task that demands
close collaboration between users and RSA agents as found in the
prior work [74] and also in our user interview study presented
above. In theory, representing the real world in 3D digital maps
can address challenges like lack of indoor maps and agent’s lack of
environmental knowledge. If such maps are interactive, allow col-
laborative annotation, and support map-based localization and path
planning, these can address the challenges caused by the limited
view of camera [120]. Other developments, such as augmenting
video streams with texts, graphics, and detected objects, can ad-
dress challenges like difficulty in conveying distance information,
reading signage and text in a video feed, highlighting landmark,
and reducing agents’ context switches.

5.1 3D Map Construction for the RSA Use
3D mapping is the profiling of real-world objects in 3D space. Com-
pared to conventional 2D maps, 3D maps provide a more realistic
and intuitive view of the environment. A 3D map is usually repre-
sented by point cloud data, which comprise a dense set of vertices
in 3D space. Point clouds can be captured by various sensors, in-
cluding Light Detection and Ranging (LiDAR), Time-of-Flight (ToF)
cameras, and RGB cameras with photogrammetry techniques. We
can use smartphones’ built-in augmented reality (AR) frameworks,
such as ARKit [3], ARCore [1], to generate point clouds. Besides,
the new iPhone 12 Pro and iPad Pro also integrate a LiDAR scanner,
making it possible to create high-quality 3D maps directly from
hand-held devices. The point clouds generated by AR frameworks
are much denser than those created from RGB videos with structure
from motion (SfM) pipelines [45]. Depending on the application
scenarios, mapping the locations of interest can be implemented
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Challenging Scenarios for Users
Outdoor scenarios Indoor scenarios
1. Going to mailbox 1. Finding trash cans or vending machines
2. Taking a walk around a familiar area (e.g., park, campus) 2. Finding architectural features (e.g., stairs, elevators,

doors, exits, or washrooms)
3. Walking to the closest coffee shop 3. Finding a point-of-interest in indoor navigation

(e.g., a room number, an office)
4. Finding the bus stop 4∗. Navigating malls, hotels, conference venues, or

similarly large establishments
5∗. Crossing noisy intersections without veering 5. Finding the correct train platform
6. Calling a ride-share and going to the pick-up location 6. Navigating airport (e.g., security to gate, gate to

gate, or gate to baggage claim)
7∗. Navigating from a parking lot or drop-off point to the
interior of a business

7. Finding an empty seat in theaters or an empty table
in restaurants

8∗. Navigating through parking lots or construction sites
Table 3: All 15 scenarios were reported by all participants. Scenarios with ∗ occurred more frequently than others. Also, par-
ticipants perceived these as more challenging than others.

in either an offline, crowd-sourcing manner or an on-the-fly man-
ner. With 3D indoor maps, the problem G1.(1) in Table 1 can be
addressed.

The possibility of creating 3D map from an ARKit built-in hand-
held device using a smartphone application shows a great potential
not only for addressing major problems in the Challenges in RSA
category, Orientation and Localization but also for providing a plat-
form that can enable the multiple levels of human-AI collaboration
(RSA agent-AI-RSA user). As presented in section 2, the feasibil-
ity and effectiveness of the technology itself has been evaluated
and demonstrated by other researchers’ investigations [114, 123]
with the interest of directly helping people with VI, not the RSA
agents. However, considering its newness and known inaccuracy
issues [101] that could create undesirable experiences for users
with visual impairment as well as the potential benefits for the
RSA’s notable problems, it is opportune to investigate the use of
technology in the RSA system.

The user App can be equipped with ARKit or ARCore framework.
Using this app, sighted volunteers can iteratively construct offline
maps by carefully scanning interesting areas. During scanning, the
generated point clouds are uploaded to a computer server in real-
time. Later, when another sighted volunteer scans the same area
or building, the server automatically detects the correspondence
between the current map and previously stored ones. If adequate
overlapping areas are recognized, the current map will be merged
to the matched map.

If offline 3D maps are not available, especially when an RSA user
navigates a new environment, the App still can generate a new 3D
map in real time for the areas recorded by the user’s smartphone
camera. Note that it stores 3D visual information of the whole area
that the user’s camera has scanned so far and continues to expand
as the user moves, whereas the video feed only provides the current
view in front of the camera. Compared to the video feed alone, the
on-the-fly 3D maps provide a more holistic view of the scene and
the user’s movement. In a sense, the 3Dmap can serve as the “visual
memory” for the agent.

5.2 Collaborative Annotation for Limitation of
Map

The construction and use of the 3D map in RSA system can also
allow sighted volunteers to interact with the system and annotate
the 3D map in a collaborative way. This would enrich the map
with the information needed for RSA agents, and thus address the
identified problem G1.(4) and G1.(5) in Table 1. The generated 3D
maps are point clouds without semantic information. To facilitate
navigation task, sighted volunteers can manually annotate land-
marks or objects on the 3D maps. Similar to map construction, this
can be done in either an offline or online manner.

For offline annotation, sighted volunteers can create, edit, or
delete landmarks (e.g., meeting rooms, offices) on the point cloud
data based on their knowledge of the buildings. Providing an addi-
tional tool and feature (e.g., search bar) along with the annotation
functionality would make the edit process more efficient. The an-
notations are thus flexible for the dynamic environmental changes.
One advantage of offline annotation is that the map construction
and annotation steps are separated so that the respective workflows
do not interrupt each other. During online annotation, sighted vol-
unteers create, edit, or delete labels directly on the video feed. For
example, while scanning the hallway, the sighted volunteer adds an
annotation for the office number. This annotation is automatically
transferred to the 3D map to minimize the interruption of mapping
workflow.

5.3 Map-based Localization for Real-Time
Locating and Tracking the User

Once the 3D map of a certain building has been constructed and an-
notated, the first step of using such a map would involve localizing
the user on the map. This localization capability would compensate
for the RSA agents’ lack of environmental knowledge and unfamil-
iarity and the inaccuracy of GPS that create the problem of difficulty
in orienting the users in their current surroundings. We imagine the
dashboard that RSA agents look at would have divided windows:
one side shows the indoor 3D map of the building in which the user
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is currently located; the other side shows the live video feed from
the user’s smartphone.

When the user enters the building, the offline-built 3D map will
be automatically loaded to the center window in the dashboard.
Feature points are detected from the frames of the live video feed
andmatchedwith the 3D point cloud. After finding the initial 2D-3D
correspondences between the images and the 3Dmap, feature points
are continuously tracked in real-time. If the camera is calibrated, its
real-time location and orientation can be computed from the 2D-3D
correspondences by solving the Perspective-n-Point problem [57].
Because the user holds the smart device in a front-facing manner,
the location and orientation of the user are the same as that of
the camera. Thus, the system can show the user’s location and
orientation on the 3D map, addressing problem G1.(2), G1.(3), and
G1.(7) in Table 1.

5.4 Interacting with 3D Maps for Efficient
Information Retrieval and Delivery

Once the detailed 3D map with the annotated information is ready
for the RSA agent, it would be greatly helpful if the agent could
retrieve and view the only information she or he wants and needs
on the map and customize the way the map is shown. This flexibility
and interactivity with the map and accompanying information can
address the identified problem G1.(6) and group G3 in Table 1.

With the user localized on the map, RSA agents interact with
the map the same way they interact with 2D maps. For example,
the agent can browse or search the landmark, and change the scale
and viewpoint via zoom in/out, translation, and rotation. Some-
times, switching between views or returning to the top global view
requires multiple steps and tweaks (zoom in/out, translation, and
rotation). To make the interaction more efficient, the dashboard
can contain several shortcut buttons to reset view, switch between
the global map, current location first-person view, and destination.

Relying on either the annotated landmarks or online map explo-
ration through an interactive interface, an RSA agent can find and
mark the destination on the 3D map and perform a path planning.
This additional interactive feature that helps determining the path
in the beginning of interacting with the user can lessen the problem
of the cognitive overload for the RSA agent (i.e., problem group G3
in Table 1.) When the user’s location and the destination are known,
the RSA agent can further decide and draw a walkable path on the
3D map. Alternatively, the path can be automatically planned by an
A∗ path search algorithm [56] (similar to routes in Google Maps).

5.5 Augmenting Video Stream
If the planned path drawn on the 3D map also can be projected in
the live video feed, it would make the RSA agent’s user guiding
task much easier. The current Augmented Reality (AR) technology
can make this possible. Any real-time key information such as turn-
by-turn directions, distances, and landmarks can be augmented in
the live video stream. This additional AR powered presentation of
the information would provide the RSA agent with a next level of
information acquirement and process, and thus will help with the
challenges in delivering information to the users.

It also can show distance bands of the user to points in the scene
(e.g., 5 ft and 10 ft) based on the real-time localization on the 3D

map. In addition, the annotated landmarks and objects in the 3D
map can also be projected to the video feed with the appropriate
distance information, e.g., Office 101 and Display Cabinet. To facili-
tate measuring distances in a broader range, the global top-view of
the map can be divided into grids, commonly used in cartography.
With distance bands and grids, the problem G2.(2) in Table 1 can
be addressed.

In the live video feed, the RSA agent may miss important land-
marks or signs. The recent capabilities of computer vision tech-
niques to detect objects and read scene texts can be leveraged to
create additional AR labels on the live video [77, 126]. The text
recognition function, as demonstrated by SeeingAI [82] app, can
be particularly useful in challenging situations such as blurry or
partially-occluded signs. At any time, RSA agents can enable or
disable an augmented element.

6 DISCUSSION: EMERGING PROBLEMS IN
HUMAN-AI COLLABORATION

In the following sections, we present a subset of challenges listed in
Table 1 that cannot be addressed by existing CV-based techniques,
for which we formulate five emerging human-AI collaborative ap-
proaches.

6.1 Emerging Problem 1: Making Object
Detection and Obstacle Avoidance
Algorithms Blind-aware

Obstacle avoidance is a main task in people with VI’s navigation
due to safety concerns. As discussed in literature review, detecting
obstacles is a notable challenge through the narrow camera view,
because the obstacle could appear vertically from ground level to
head height, and horizontally along the body width [43, 62, 91],
as listed in problem G3.(1) in Table 1. This requires the agents to
observe the obstacles at a distance from the camera feed. But it is
still extremely difficult for the agents because the obstacles afar
would be too small to recognize in the camera feed. The challenge
motivates us to resort to AI-based object detection algorithms [124],
which are able to detect small objects. However, it is problematic to
directly apply existing object detection algorithms [96, 97] to the
RSA services. For example, a wall boarding a sidewalk is considered
as obstacles in common recognition models but can be regarded
as Orientation & Mobility (O&M) affordances for people with VI
who use a cane and employ the wall as a physical reference. We
term the ability of recognizing affordances that are important for
people with VI as blind-aware, a common philosophy in end-user
development [36]. Due to the importance of detecting obstacle
in a blind-aware manner, we consider it as an emerging research
problem that can be addressed by human-AI collaboration.

In the context of navigation, researches have adopted machine
learning algorithms to automatically detect and assess pedestrian
infrastructure using online map imagery (e.g., satellite photos [6, 7],
streetscape panoramas [54, 55, 108]). Recent work [118] applied
ResNet [58] to detect the accessibility features (e.g., missing curb
ramps, surface problems, sidewalk obstructions) by annotating a
dataset of 58,034 images from Google Street View (GSV) panoramas.

We can extend these lines of work to a broader research problem
of detecting objects including accessibility cues in navigation. First,
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we need volunteers to collected relevant data from satellite pho-
tos (e.g., Google Street, Open-street maps), panoramic streetscape
imagery, 3D point clouds, and camera feeds of the users. Follow-
ing [118], data-driven deep learning models are trained with human
annotated data. It is worth noting that the data are not limited to
images but also 3D mesh or point clouds, especially considering
iPhone 12/13 Pro has equipped with LiDAR scanner. To train blind-
aware models for object detection, we also need to manually define
whether an object is blind-aware with the help of people with VI.
Specifically, blind users can provide feedback on the quality of a
physical cue [119]. Besides, another human-AI collaboration direc-
tion is to online update the computer vision (e.g., obstacle detection)
models with new navigation data marked by the agents. Solving this
problem could make blind navigation more customized to how the
blind user navigates through space and expedite the development
of the automated navigation guidance system for blind users.

6.2 Emerging Problem 2: Localizing Users
Under Poor Networks

Although cellular bandwidth has been increased over the years, the
bad cellular connection is still a major problem in RSA services,
especially in indoor navigation [59], as listed in problem G4.(1) in
Table 1. The common consequences include large delays or break-
downs of video transmissions [15, 62, 65]. Suppose the poor network
only allows transmitting limited amount of data and cannot support
live camera feed, it is almost impossible for the agents to localize
the user and give correct navigational instructions. Based on this
observation, we identify an emerging research problem of localiz-
ing users under poor networks that can be addressed by human-AI
collaboration.

With regard to AI-based methods, one possible solution is to use
interactive 3D maps, constructed with ARKit [3] using an iPad with
a LiDAR scanner. During an RSA session under a poor network, the
user’s camera can relocalize them in the 3D maps. If their location
and camera pose is transmitted to the agents, agents can simulate
their surroundings on the preloaded offline 3D maps. Considering
the camera pose can be represented by a 4×4 homogeneous matrix,
the transmitted data size is negligible. With voice chat and the
camera pose displayed on the 3D maps, the agent can learn enough
information about the user’s surroundings and localize the user
under a poor network momentarily.

In terms of human-AI collaboration, to the best of our knowledge,
there is no work for RSA on localizing users under poor networks.
Without live camera feed, it would be a more interesting human-AI
collaboration problem. To localize the user in such situation, the
communication between the agent and the user would be greatly
different. We can imagine some basic communication patterns. First,
the agent can ask the user to make certain motions (e.g., turn right,
go forward) to verify the correctness of the camera pose display.
In turn, the user can actively ask the agent to confirm the exis-
tence of an O&M cue (e.g., a wall) from the 3D maps. It is worth
noting that the offline 3D map could be different from the user’s
current surroundings. When exploring the map, they also need to
work together to eliminate the distraction of dynamic objects (e.g.,
moving obstacles) which do not exist on the 3D map. The detailed
problems have never been studied. For example, how to detect the

localization errors and maintain the effective RSA services in low
data transmission rate.

6.3 Emerging Problem 3: Recognizing Digital
Content on Digital Displays

Digital displays, such as LCD screens and signages, are widely used
in everyday life to present important information, e.g., flight in-
formation display board at the airport, digital signage at theaters,
and temperature control panel in the hotel. RSA agents reported
difficulty in reading texts on these screens when streamed through
the users’ camera feed, as listed in problem G2.(1) in Table 1. This
difficulty can be caused by several technical factors, including vary-
ing brightness of a screen, i.e., the display of a screen is a mixture of
several light sources, e.g., LCD backlight, sunlight, lamplight [89];
a mismatch in the camera’s frame rate and the screen’s refresh rate;
and a mismatch in the dimension of pixel grids of the camera and
the screen, resulting in moiré patterns, i.e., showing strobe or strip-
ing optical effects [89]. Based on the significance and challenges of
recognizing content on digital displays through camera feeds, we
consider it as an emerging research problem that can be addressed
by human-AI collaboration.

From the perspective of AI solutions, there exist a few computer
vision systems that assist blind users to read the LCD panels on
appliances [38, 49, 85, 111]. However, these systems are heuristic-
driven, fairly brittle, and only work in limited circumstances. To
the best of our knowledge, there is no text recognition method
specifically designed to recognize digital texts on LCD screens or
signages in the wild.

In this regard, we consider scene text detection and recogni-
tion [77] as the closest computer vision method aiming to read
texts in the wild. However, these methods are far more difficult
than the traditional optical character recognition (OCR) of texts
from documents. For example, the state-of-the-art deep learning
methods [18, 116, 122] only achieve < 85% recognition accuracy on
the benchmark dataset ICDAR 2015 (IC15) [66]. Furthermore, exist-
ing methods for scene text recognition are likely to suffer from the
domain shift problem due to the distinct lighting condition [115],
resulting in even worse recognition performance in reading digital
content on LCD screens.

To formulate human-AI collaboration, we consider scene text
recognition methods [77] as the basis for AI models. Next, we con-
sider three aspects of human-AI collaboration. First, computer vi-
sion techniques can be used to enhance the camera feed display [12],
while the agents are responsible for the content recognition. In this
way, the content in the live camera feed will be transferred to have
better lighting and contrast, making them more suitable for the
agents to perceive and recognize.

Second, scene text recognition methods [77] can be used to read
the digital content for the agents and provide the recognition confi-
dence. It may be especially useful in recognizing small-scale text
which is too small in the camera display for the agents to read but
with enough pixels for the AI models to process. The agent can ask
the user to change the camera angle to get a better view to achieve
better recognition results.

Third, the agents are usually interested in recognizing certain
texts on the screen, thus can mark the region of interest for AI
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to process. In this manner, the agents can improve the process-
ing speed of AI models, as well as reduce the models’ unwanted,
distracting outputs.

Note that the above three aspects of human-AI collaboration
overlap, e.g., the enhanced camera feed can be used for both humans
and AI to recognize better. Since it is still an open problem, there
may be other aspects of human-AI collaboration to explore in the
future. For example, to train AI models specifically for digital text
on LCD screens, we need volunteers to collect pictures of digital
content on LCD screens or signages from different sources (e.g.,
Internet, self-taken) with various conditions (e.g., image resolution,
character size, brightness, blurriness) and annotate the location and
content of the text on the pictures. VizWiz [51] dataset has set one
such precedent. This dataset contains over 31, 000 visual questions
originating from blind users who captured a picture using their
smartphone and recorded a spoken question about it, together with
10 crowdsourced answers per visual question.

6.4 Emerging Problem 4: Recognizing Texts on
Irregular Surfaces

Reading important information on irregular surfaces (e.g., curved
surface, non-orthogonal orientation) is common in people with VI’s
lives, e.g., reading the instructions on medical bottles, checking
the ingredients on packaged snacks or drink bottles. However, it is
extremely challenging for the agents to recognize text on irregular
surfaces through the camera feed [59] due to the distorted text and
unwanted light reflection, as listed in problem G2.(1) in Table 1.
Therefore, we identify an emerging research problem of reading
text on irregular surfaces that can be addressed by human-AI col-
laboration.

As far as only AI techniques are considered, scene text detection
and recognition methods [77] could offer possible solutions to this
problem based on the discussions in Problem 3. But the weaknesses
of the pure AI solutions are similar to that in Problem 3. First, the
state-of-the-art scene text recognition methods [18, 116, 122] still
cannot perform satisfactorily on benchmark datasets. Second, exist-
ing text recognition methods [77] mostly read text on flat surfaces,
and there are no methods specifically designed for recognizing text
on irregular surfaces. When directly applying existing methods to
reading text on irregular surfaces, the recognition accuracy would
degrade further owing to the text distortion and light reflection.

Without regard to human-AI collaboration, scene text recogni-
tion methods [77] read text only relying on the trained AI models
but not considering human inputs, while existing RSA services
take no account of the potential applications of AI-based methods.
Similar to Problem 3, we consider three main aspects of human-AI
collaboration in recognizing text on irregular surfaces. First, the
computer vision techniques can rectify the irregular content [105]
and augment the video (e.g., with super-resolution [117]), and the
agents recognize the text from the augmented video. Second, the
agents can ask the user to move/rotate the object (e.g., medicine
bottle) or change the camera angle to have a better view, and the
AI models [77] can help recognizing the text, especially the small
characters. Third, the agents select the region of interest on the ir-
regular surfaces in the video for AI to process by either augmenting
display or recognizing text. In addition, volunteers may be needed

to collect images of text on different irregular surfaces (e.g., round
bottles, packaged snacks) with various conditions (e.g., image reso-
lution, character size, viewing angle) and annotate them for training
customized AI models.

Despite similarities, there are three main differences between
Problem 3 and Problem 4: (i) Problem 3 addresses the text recogni-
tion problem for luminous digital screen, but Problem 4 focuses on
the text on non-luminous physical objects; (ii), the text in Problem
3 is on planar screens, but Problems 4 address the recognition on
irregular (e.g., curved) surfaces. Thus, they require different cus-
tomized AI models; and (iii) the screens in Problem 3 are usually
fixed, and the user can move the camera to get a better view angle.
In contrast, the objects with text in Problem 4 are movable. For
example, the user can rotate the medicine bottle as well as chang-
ing the camera angle. That is, Problem 4 supports more interaction
patterns than Problem 3.

6.5 Emerging Problem 5: Predicting the
Trajectories of Out-of-Frame Pedestrians or
Objects

In RSA services, the agents need to provide the environmental in-
formation in the user’s surrounding (e.g., obstacles and pedestrian
dynamics) for safety when the user is in a crowded scene. The
trajectory prediction of pedestrians or moving objects could assist
the agent to provide timely instructions to avoid collision. Accord-
ing to the literature review, it is extremely difficult for the RSA
agents to track other pedestrians/objects [59, 62] from the users’
camera feed, and almost impossible to predict the trajectories of
out-of-frame pedestrians or objects [16, 27, 43, 62, 65, 91, 104], as
listed in problem G2.(3) and G2.(4) in Table 1. The main reasons are
the narrow view of the camera and the difficulty of estimating the
distance. Based on this observation, we pose an emerging research
problem of predicting the trajectories of out-of-frame pedestrians
or objects that can be addressed by human-AI collaboration.

If only considering AI solutions, we can adopt human trajectory
prediction technology [100] which has be studied as a computer
vision and robotics problem. Specifically, the motion pattern of
pedestrians/objects can be learned by a data-driven behavior model
(e.g., deep neural networks). Then, based on the observation from
the past trajectories, the behavior model can predict the future tra-
jectories of the observed pedestrians/objects. There are two types
of problem settings, i.e., observed from either static surveillance
cameras [9, 50] or moving (hand-held or vehicle-mounted) cam-
eras [79, 121]. For RSA application, we focus on predicting from
hand-held cameras. Existing trajectory prediction methods forecast
the future pixel-wise locations of the pedestrians on the camera
feed without considering the out-of-frame cases. The pixel-level
prediction is also not useful for the agents to estimate the distance
to avoid collision. Moreover, existing models are learned from the
scene without people with VI, but the motion patterns of pedestri-
ans around people with VI could be rather different.

In terms of human-AI collaboration, to the best of our knowl-
edge, there is no work exploring the problem of pedestrian tracking
and trajectory prediction under active camera controls. We con-
sider three aspects of human-AI collaboration in predicting the
trajectories of out-of-frame pedestrians. First, we need to develop
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user-centered trajectory prediction technologies. On one hand, the
behavior models need to be trained from a people with VI-centered
scene. On the other hand, the predicted trajectories should be pro-
jected to the real world where even the pedestrians cannot be ob-
served from the camera feed. Based on such trajectory predictions,
the agents can quickly plan the path and provide instructions to the
user. Second, the agents may be only interested in the pedestrian
dynamics towards the user’s destination. In this case, the agents
can mark the region of interest for AI models to conduct predic-
tion. Then, AI models will save some computational resources and
also understand the interest of the agents. Third, in turn, AI mod-
els could suggest moving the camera towards a certain direction
(e.g., left) to get more observations for better predictions. In this
way, AI models can better reconstruct the scene for the agents to
make navigational decisions for the user. This problem can be fur-
ther extended in the human-AI collaboration setting. For example,
AI could offer suggestions on the user’s walking directions with
motion planning algorithms [84] based on the prediction results.

7 CONCLUSION
We first synthesize an exhaustive list of navigational challenges in
agent-user interaction in RSA services through a literature review
and a study with 12 visually impaired RSA users. Next, drawing
on the prior work on computer vision-mediated RSA service, our
analysis shows that some identified challenges cannot be addressed
by off-the-shelf computer vision techniques because of the com-
plexity of the underlying problems. Finally, we envision that these
challenges can be addressed by the collaboration between RSA
agents and computer vision systems. Therefore, we formulate five
such emerging human-AI collaboration problems in the context
of computer vision-mediated remote-sighted assistance. We hope
our problem formulation will inspire researchers working in this
area to take on these problems and open up new opportunities to
enhance the RSA assistive experience.

ACKNOWLEDGMENTS
This research was supported by the US National Institutes of Heath,
National Library of Medicine (R01 LM013330).

REFERENCES
[1] 2021. ARCore. Retrieved June 27, 2021 from https://developers.google.com/ar
[2] 2021. Autour. http://autour.mcgill.ca/en/.
[3] 2021. More to Explore with ARKit 5. Retrieved June 27, 2021 from https:

//developer.apple.com/augmented-reality/arkit/
[4] 2021. OpenStreetMap. https://www.openstreetmap.org/.
[5] 2021. The Seeing Eye GPS™ App in the iTunes Apple Store! http://www.

senderogroup.com/products/shopseeingeyegps.html.
[6] Dragan Ahmetovic, Roberto Manduchi, James M Coughlan, and Sergio Mascetti.

2015. Zebra crossing spotter: Automatic population of spatial databases for
increased safety of blind travelers. In Proceedings of the 17th International ACM
SIGACCESS Conference on Computers & Accessibility. 251–258.

[7] Dragan Ahmetovic, Roberto Manduchi, James M Coughlan, and Sergio Mascetti.
2017. Mind your crossings: Mining GIS imagery for crosswalk localization. ACM
Transactions on Accessible Computing (TACCESS) 9, 4 (2017), 1–25.

[8] Aira. 2021. Aira. https://aira.io/.
[9] Alexandre Alahi, Kratarth Goel, Vignesh Ramanathan, Alexandre Robicquet, Li

Fei-Fei, and Silvio Savarese. 2016. Social lstm: Human trajectory prediction in
crowded spaces. In Proceedings of the IEEE conference on computer vision and
pattern recognition. 961–971.

[10] Moustafa Alzantot and Moustafa Youssef. 2012. Crowdinside: Automatic con-
struction of indoor floorplans. In Proceedings of the 20th International Conference
on Advances in Geographic Information Systems. 99–108.

[11] Mauro Avila, KatrinWolf, Anke Brock, and Niels Henze. 2016. Remote assistance
for blind users in daily life: A survey about Be My Eyes. In Proceedings of the
9th ACM International Conference on PErvasive Technologies Related to Assistive
Environments. 1–2.

[12] Mohamad Nurfakhrian Aziz, Tito Waluyo Purboyo, and Anggunmeka Luhur
Prasasti. 2017. A survey on the implementation of image enhancement. Int. J.
Appl. Eng. Res 12, 21 (2017), 11451–11459.

[13] Yicheng Bai, Wenyan Jia, Hong Zhang, Zhi-Hong Mao, and Mingui Sun. 2014.
Landmark-based indoor positioning for visually impaired individuals. In 2014
12th International Conference on Signal Processing (ICSP). IEEE, 668–671.

[14] Nikola Banovic, Rachel L Franz, Khai N Truong, Jennifer Mankoff, and Anind K
Dey. 2013. Uncovering information needs for independent spatial learning for
users who are visually impaired. In Proceedings of the 15th International ACM
SIGACCESS Conference on Computers and Accessibility. 1–8.

[15] Przemyslaw Baranski, Maciej Polanczyk, and Pawel Strumillo. 2010. A remote
guidance system for the blind. In The 12th IEEE International Conference on
e-Health Networking, Applications and Services. IEEE, 386–390.

[16] Przemyslaw Baranski and Pawel Strumillo. 2015. Field trials of a teleassistance
system for the visually impaired. In 2015 8th International Conference on Human
System Interaction (HSI). IEEE, 173–179.

[17] BeMyEyes. 2021. Be My Eyes. https://www.bemyeyes.com/.
[18] Ayan Kumar Bhunia, Aneeshan Sain, Amandeep Kumar, Shuvozit Ghose,

Pinaki Nath Chowdhury, and Yi-Zhe Song. 2021. Joint Visual Semantic Reason-
ing: Multi-Stage Decoder for Text Recognition. arXiv preprint arXiv:2107.12090
(2021).

[19] Jeffrey P Bigham, Chandrika Jayant, Andrew Miller, Brandyn White, and Tom
Yeh. 2010. VizWiz:: LocateIt-enabling blind people to locate objects in their
environment. In 2010 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition-Workshops. IEEE, 65–72.

[20] BlindSquare. 2020. BlindSquare iOSApplication. https://www.blindsquare.com/.
[21] Erin Brady, Jeffrey P Bigham, et al. 2015. Crowdsourcing accessibility: Human-

powered access technologies. Foundations and Trends® in Human–Computer
Interaction 8, 4 (2015), 273–372.

[22] Erin Brady, Meredith Ringel Morris, Yu Zhong, Samuel White, and Jeffrey P
Bigham. 2013. Visual challenges in the everyday lives of blind people. In Proceed-
ings of the SIGCHI conference on human factors in computing systems. 2117–2126.

[23] Steve Branson, Catherine Wah, Florian Schroff, Boris Babenko, Peter Welinder,
Pietro Perona, and Serge Belongie. 2010. Visual recognition with humans in the
loop. In European Conference on Computer Vision. Springer, 438–451.

[24] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[25] Nama R Budhathoki and Caroline Haythornthwaite. 2013. Motivation for open
collaboration: Crowd and community models and the case of OpenStreetMap.
American Behavioral Scientist 57, 5 (2013), 548–575.

[26] Andrius Budrionis, Darius Plikynas, Povilas Daniušis, and Audrius Indrulionis.
2020. Smartphone-based computer vision travelling aids for blind and visually
impaired individuals: A systematic review. Assistive Technology (2020), 1–17.

[27] M Bujacz, P Baranski, M Moranski, P Strumillo, and A Materka. 2008. Remote
guidance for the blind—A proposed teleassistance system and navigation trials.
In 2008 Conference on Human System Interactions. IEEE, 888–892.

[28] Michele A Burton, Erin Brady, Robin Brewer, Callie Neylan, Jeffrey P Bigham,
and Amy Hurst. 2012. Crowdsourcing subjective fashion advice using VizWiz:
challenges and opportunities. In Proceedings of the 14th international ACM
SIGACCESS conference on Computers and accessibility. ACM, 135–142.

[29] John M. Carroll, Sooyeon Lee, Madison Reddie, Jordan Beck, and Mary Beth
Rosson. 2020. Human-Computer Synergies in Prosthetic Interactions. IxD&A
44 (2020), 29–52. http://www.mifav.uniroma2.it/inevent/events/idea2010/doc/
44_2.pdf

[30] Babar Chaudary, Iikka Paajala, Eliud Keino, and Petri Pulli. 2017. Tele-guidance
based navigation system for the visually impaired and blind persons. In eHealth
360. Springer, 9–16.

[31] Si Chen, Muyuan Li, Kui Ren, and Chunming Qiao. 2015. Crowd map: Accurate
reconstruction of indoor floor plans from crowdsourced sensor-rich videos. In
2015 IEEE 35th International conference on distributed computing systems. IEEE,
1–10.

[32] Ivan Dokmanić, Reza Parhizkar, AndreasWalther, YueM. Lu, andMartin Vetterli.
2013. Acoustic echoes reveal room shape. Proceedings of the National Academy of
Sciences 110, 30 (2013), 12186–12191. https://doi.org/10.1073/pnas.1221464110
arXiv:https://www.pnas.org/content/110/30/12186.full.pdf

[33] Mostafa Elgendy, Miklós Herperger, Tibor Guzsvinecz, and Cecilia Sik Lanyi.
2019. Indoor Navigation for People with Visual Impairment using Augmented
Reality Markers. In The 10th IEEE International Conference on Cognitive Infocom-
munications (CogInfoCom). IEEE, 425–430.

[34] Wafa Elmannai and Khaled M. Elleithy. 2017. Sensor-based assistive devices
for visually-impaired people: Current status, challenges, and future directions.
Sensors (Basel, Switzerland) 17 (2017).

[35] Navid Fallah, Ilias Apostolopoulos, Kostas Bekris, and Eelke Folmer. 2012. The
user as a sensor: navigating users with visual impairments in indoor spaces

https://developers.google.com/ar
http://autour.mcgill.ca/en/
https://developer.apple.com/augmented-reality/arkit/
https://developer.apple.com/augmented-reality/arkit/
https://www.openstreetmap.org/
http://www.senderogroup.com/products/shopseeingeyegps.html
http://www.senderogroup.com/products/shopseeingeyegps.html
https://aira.io/
https://www.bemyeyes.com/
https://www.blindsquare.com/
http://www.mifav.uniroma2.it/inevent/events/idea2010/doc/44_2.pdf
http://www.mifav.uniroma2.it/inevent/events/idea2010/doc/44_2.pdf
https://doi.org/10.1073/pnas.1221464110
https://arxiv.org/abs/https://www.pnas.org/content/110/30/12186.full.pdf


IUI ’22, March 22–25, 2022, Helsinki, Finland Lee, Yu, Xie, Billah, and Carroll

using tactile landmarks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems. 425–432.

[36] G. Fischer, E. Giaccardi, Y. Ye, A. G. Sutcliffe, and N. Mehandjiev. 2004. Meta-
Design: A Manifesto for End-User Development. Commun. ACM 47, 9 (Sept.
2004), 33–37. https://doi.org/10.1145/1015864.1015884

[37] Giovanni Fusco and James M Coughlan. 2020. Indoor localization for visually
impaired travelers using computer vision on a smartphone. In Proceedings of
the 17th International Web for All Conference. 1–11.

[38] Giovanni Fusco, Ender Tekin, Richard E Ladner, and James M Coughlan. 2014.
Using computer vision to access appliance displays. In Proceedings of the 16th
international ACM SIGACCESS conference on Computers & accessibility. 281–282.

[39] Aura Ganz, Siddhesh Rajan Gandhi, James Schafer, Tushar Singh, Elaine Puleo,
Gary Mullett, and Carole Wilson. 2011. PERCEPT: Indoor navigation for the
blind and visually impaired. In 2011 Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE, 856–859.

[40] Aura Ganz, James M Schafer, Yang Tao, Carole Wilson, and Meg Robertson.
2014. PERCEPT-II: Smartphone based indoor navigation system for the blind.
In 2014 36th Annual International Conference of the IEEE Engineering in Medicine
and Biology Society. IEEE, 3662–3665.

[41] Vanja Garaj, Ziad Hunaiti, and Wamadeva Balachandran. 2007. The effects of
video image frame rate on the environmental hazards recognition performance
in using remote vision to navigate visually impaired pedestrians. In Proceedings
of the 4th international conference on mobile technology, applications, and systems
and the 1st international symposium on Computer human interaction in mobile
technology. 207–213.

[42] Vanja Garaj, Ziad Hunaiti, and Wamadeva Balachandran. 2010. Using remote
vision: the effects of video image frame rate on visual object recognition perfor-
mance. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and
Humans 40, 4 (2010), 698–707.

[43] Vanja Garaj, Rommanee Jirawimut, Piotr Ptasinski, Franjo Cecelja, and Wa-
madeva Balachandran. 2003. A system for remote sighted guidance of visually
impaired pedestrians. British Journal of Visual Impairment 21, 2 (2003), 55–63.

[44] Cole Gleason, Dragan Ahmetovic, Saiph Savage, Carlos Toxtli, Carl Posthuma,
Chieko Asakawa, Kris M Kitani, and Jeffrey P Bigham. 2018. Crowdsourcing the
installation and maintenance of indoor localization infrastructure to support
blind navigation. Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies 2, 1 (2018), 1–25.

[45] Cole Gleason, Anhong Guo, Gierad Laput, Kris Makoto Kitani, and Jeffrey P.
Bigham. 2016. VizMap: Accessible Visual Information Through Crowdsourced
Map Reconstruction. In Proceedings of the 18th International ACM SIGACCESS
Conference on Computers and Accessibility, ASSETS. ACM, 273–274.

[46] GPS.gov. [n.d.]. GPS Accuracy. https://www.gps.gov/systems/gps/performance/
accuracy/.

[47] João Guerreiro, Dragan Ahmetovic, Daisuke Sato, Kris Kitani, and Chieko
Asakawa. 2019. Airport accessibility and navigation assistance for people
with visual impairments. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–14.

[48] João Guerreiro, Daisuke Sato, Saki Asakawa, Huixu Dong, Kris M Kitani, and
Chieko Asakawa. 2019. CaBot: Designing and evaluating an autonomous naviga-
tion robot for blind people. In The 21st International ACM SIGACCESS Conference
on Computers and Accessibility. 68–82.

[49] Anhong Guo, Junhan Kong, Michael Rivera, Frank F Xu, and Jeffrey P Bigham.
2019. Statelens: A reverse engineering solution for making existing dynamic
touchscreens accessible. In Proceedings of the 32nd Annual ACM Symposium on
User Interface Software and Technology. 371–385.

[50] Agrim Gupta, Justin Johnson, Li Fei-Fei, Silvio Savarese, and Alexandre Alahi.
2018. Social gan: Socially acceptable trajectories with generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. 2255–2264.

[51] Danna Gurari, Qing Li, Abigale J Stangl, Anhong Guo, Chi Lin, Kristen Grauman,
Jiebo Luo, and Jeffrey P Bigham. 2018. Vizwiz grand challenge: Answering visual
questions from blind people. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 3608–3617.

[52] Richard Guy and Khai Truong. 2012. CrossingGuard: exploring information
content in navigation aids for visually impaired pedestrians. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. 405–414.

[53] Kotaro Hara, Shiri Azenkot, Megan Campbell, Cynthia L Bennett, Vicki Le, Sean
Pannella, Robert Moore, Kelly Minckler, Rochelle H Ng, and Jon E Froehlich.
2015. Improving public transit accessibility for blind riders by crowdsourcing
bus stop landmark locations with google street view: An extended analysis.
ACM Transactions on Accessible Computing (TACCESS) 6, 2 (2015), 1–23.

[54] Kotaro Hara, Jin Sun, Jonah Chazan, David Jacobs, and Jon E Froehlich. 2013.
An initial study of automatic curb ramp detection with crowdsourced verifi-
cation using google street view images. In First AAAI Conference on Human
Computation and Crowdsourcing.

[55] Kotaro Hara, Jin Sun, Robert Moore, David Jacobs, and Jon Froehlich. 2014.
Tohme: detecting curb ramps in google street view using crowdsourcing, com-
puter vision, and machine learning. In Proceedings of the 27th annual ACM

symposium on User interface software and technology. 189–204.
[56] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A formal basis for the

heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4,
2 (1968), 100–107.

[57] R. Hartley and A. Zisserman. 2000. Multiple View Geometry in Computer Vision.
Cambridge University Press.

[58] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[59] Nicole Holmes and Kelly Prentice. 2015. iPhone video link facetime as an
orientation tool: remote O&M for people with vision impairment. International
Journal of Orientation & Mobility 7, 1 (2015), 60–68.

[60] Bill Holton. 2015. Crowdviz: Remote video assistance on your iphone. AFB
AccessWorld Magazine (2015).

[61] Bill Holton. 2016. BeSpecular: A new remote assistant service. Access World
Magazine 17, 7 (2016).

[62] Ziad Hunaiti, Vanja Garaj, and Wamadeva Balachandran. 2006. A remote vision
guidance system for visually impaired pedestrians. The Journal of Navigation
59, 3 (2006), 497–504.

[63] Ziad Hunaiti, Vanja Garaj, Wamadeva Balachandran, and Franjo Cecelja. 2005.
Use of remote vision in navigation of visually impaired pedestrians. In Interna-
tional Congress Series, Vol. 1282. Elsevier, 1026–1030.

[64] Rabia Jafri, Syed Abid Ali, Hamid R Arabnia, and Shameem Fatima. 2014. Com-
puter vision-based object recognition for the visually impaired in an indoors
environment: a survey. The Visual Computer 30, 11 (2014), 1197–1222.

[65] Rie Kamikubo, Naoya Kato, Keita Higuchi, Ryo Yonetani, and Yoichi Sato. 2020.
Support strategies for remote guides in assisting people with visual impairments
for effective indoor navigation. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems. 1–12.

[66] Dimosthenis Karatzas, Lluis Gomez-Bigorda, Anguelos Nicolaou, Suman Ghosh,
Andrew Bagdanov, Masakazu Iwamura, Jiri Matas, Lukas Neumann, Vijay Ra-
maseshan Chandrasekhar, Shijian Lu, et al. 2015. ICDAR 2015 competition on
robust reading. In 2015 13th International Conference on Document Analysis and
Recognition (ICDAR). IEEE, 1156–1160.

[67] Seita Kayukawa, Keita Higuchi, João Guerreiro, Shigeo Morishima, Yoichi Sato,
Kris Kitani, and Chieko Asakawa. 2019. Bbeep: A sonic collision avoidance
system for blind travellers and nearby pedestrians. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems. 1–12.

[68] Eunjeong Ko and Eun Yi Kim. 2017. A vision-based wayfinding system for visu-
ally impaired people using situation awareness and activity-based instructions.
Sensors 17, 8 (2017), 1882.

[69] Adarsh Kowdle, Yao-Jen Chang, Andrew Gallagher, and Tsuhan Chen. 2011.
Active learning for piecewise planar 3d reconstruction. In CVPR 2011. IEEE,
929–936.

[70] Aliasgar Kutiyanawala, Vladimir Kulyukin, and John Nicholson. 2011. Teleas-
sistance in accessible shopping for the blind. In Proceedings on the International
Conference on Internet Computing (ICOMP). The Steering Committee of The
World Congress in Computer Science, Computer . . . , 1.

[71] Walter S Lasecki, Kyle I Murray, Samuel White, Robert C Miller, and Jeffrey P
Bigham. 2011. Real-time crowd control of existing interfaces. In Proceedings
of the 24th annual ACM symposium on User interface software and technology.
ACM, 23–32.

[72] Walter S Lasecki, Rachel Wesley, Jeffrey Nichols, Anand Kulkarni, James F Allen,
and Jeffrey P Bigham. 2013. Chorus: a crowd-powered conversational assistant.
In Proceedings of the 26th annual ACM symposium on User interface software and
technology. ACM, 151–162.

[73] Sooyeon Lee, Madison Reddie, Krish Gurdasani, Xiying Wang, Jordan Beck,
Mary Beth Rosson, and John M. Carroll. 2018. Conversations for Vi-
sion: Remote Sighted Assistants Helping People with Visual Impairments.
arXiv:1812.00148 [cs.HC]

[74] Sooyeon Lee, Madison Reddie, Chun-Hua Tsai, Jordan Beck, Mary Beth Rosson,
and John M Carroll. 2020. The emerging professional practice of remote sighted
assistance for people with visual impairments. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems. 1–12.

[75] Gordon E Legge, Paul J Beckmann, Bosco S Tjan, Gary Havey, Kevin Kramer,
David Rolkosky, Rachel Gage, Muzi Chen, Sravan Puchakayala, and Aravindhan
Rangarajan. 2013. Indoor navigation by people with visual impairment using a
digital sign system. PloS one 8, 10 (2013).

[76] Ki-Joune Li and Jiyeong Lee. 2010. Indoor spatial awareness initiative and
standard for indoor spatial data. In Proceedings of IROS 2010 Workshop on Stan-
dardization for Service Robot, Vol. 18.

[77] Xiyan Liu, Gaofeng Meng, and Chunhong Pan. 2019. Scene text detection and
recognition with advances in deep learning: a survey. International Journal on
Document Analysis and Recognition (IJDAR) 22, 2 (2019), 143–162.

[78] Yang Liu, Noelle RB Stiles, and Markus Meister. 2018. Augmented reality powers
a cognitive assistant for the blind. ELife 7 (2018), e37841.

[79] Srikanth Malla, Behzad Dariush, and Chiho Choi. 2020. Titan: Future forecast
using action priors. In Proceedings of the IEEE/CVF Conference on Computer

https://doi.org/10.1145/1015864.1015884
https://www.gps.gov/systems/gps/performance/accuracy/
https://www.gps.gov/systems/gps/performance/accuracy/
https://arxiv.org/abs/1812.00148


Opportunities for Human-AI Collaboration in Remote Sighted Assistance IUI ’22, March 22–25, 2022, Helsinki, Finland

Vision and Pattern Recognition. 11186–11196.
[80] Roberto Manduchi, Sri Kurniawan, and Homayoun Bagherinia. 2010. Blind

guidance using mobile computer vision: A usability study. In Proceedings of the
12th international ACM SIGACCESS conference on Computers and accessibility.
241–242.

[81] TroyMcDaniel, Kanav Kahol, Daniel Villanueva, and Sethuraman Panchanathan.
2008. Integration of RFID and computer vision for remote object perception
for individuals who are blind. In Proceedings of the 2008 Ambi-Sys Workshop
on Haptic User Interfaces in Ambient Media Systems, HAS 2008. Association for
Computing Machinery, Inc. 2008 1st Ambi-Sys Workshop on Haptic User
Interfaces in Ambient Media Systems, HAS 2008 ; Conference date: 11-02-2008
Through 14-02-2008.

[82] Microsoft. 2021. Seeing AI - Talking camera app for those with a visual impair-
ment. https://www.microsoft.com/en-us/ai/seeing-ai.

[83] Akihiro Miyata, Kazuki Okugawa, Yuki Yamato, Tadashi Maeda, Yusaku Mu-
rayama, Megumi Aibara, Masakazu Furuichi, and Yuko Murayama. 2021. A
Crowdsourcing Platform for Constructing Accessibility Maps Supporting Mul-
tiple Participation Modes. In Extended Abstracts of the 2021 CHI Conference on
Human Factors in Computing Systems. 1–6.

[84] MG Mohanan and Ambuja Salgoankar. 2018. A survey of robotic motion plan-
ning in dynamic environments. Robotics and Autonomous Systems 100 (2018),
171–185.

[85] Tim Morris, Paul Blenkhorn, Luke Crossey, Quang Ngo, Martin Ross, David
Werner, and Christina Wong. 2006. Clearspeech: A Display Reader for the
Visually Handicapped. IEEE Transactions on Neural Systems and Rehabilitation
Engineering 14, 4 (2006), 492–500. https://doi.org/10.1109/TNSRE.2006.881538

[86] M. Murata, D. Ahmetovic, D. Sato, H. Takagi, K. M. Kitani, and C. Asakawa.
2018. Smartphone-based indoor localization for blind navigation across building
complexes. In 2018 IEEE International Conference on Pervasive Computing and
Communications (PerCom). 1–10.

[87] Muzammal Naseer, Salman Khan, and Fatih Porikli. 2018. Indoor scene un-
derstanding in 2.5/3d for autonomous agents: A survey. IEEE Access 7 (2018),
1859–1887.

[88] Brian J Nguyen, Yeji Kim, Kathryn Park, Allison J Chen, Scarlett Chen, Donald
Van Fossan, and Daniel L Chao. 2018. Improvement in patient-reported quality
of life outcomes in severely visually impaired individuals using the Aira assistive
technology system. Translational Vision Science & Technology 7, 5 (2018), 30–30.

[89] Gerald Oster and Yasunori Nishijima. 1963. Moiré patterns. Scientific American
208, 5 (1963), 54–63.

[90] J Eduardo Pérez, Myriam Arrue, Masatomo Kobayashi, Hironobu Takagi, and
Chieko Asakawa. 2017. Assessment of semantic taxonomies for blind indoor
navigation based on a shopping center use case. In Proceedings of the 14th Web
for All Conference on The Future of Accessible Work. 1–4.

[91] Helen Petrie, Valerie Johnson, Thomas Strothotte, Andreas Raab, Rainer Michel,
Lars Reichert, and Axel Schalt. 1997. MoBIC: An aid to increase the independent
mobility of blind travellers. British Journal of Visual Impairment 15, 2 (1997),
63–66.

[92] Swadhin Pradhan, Ghufran Baig, Wenguang Mao, Lili Qiu, Guohai Chen, and
Bo Yang. 2018. Smartphone-based acoustic indoor space mapping. Proceedings
of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 2
(2018), 1–26.

[93] Giorgio Presti, Dragan Ahmetovic, Mattia Ducci, Cristian Bernareggi, Luca Lu-
dovico, Adriano Baratè, Federico Avanzini, and Sergio Mascetti. 2019. WatchOut:
Obstacle sonification for people with visual impairment or blindness. In The
21st International ACM SIGACCESS Conference on Computers and Accessibility.
402–413.

[94] Paymon Rafian and Gordon E Legge. 2017. Remote sighted assistants for indoor
location sensing of visually impaired pedestrians. ACM Transactions on Applied
Perception (TAP) 14, 3 (2017), 19.

[95] Santiago Real and Alvaro Araujo. 2019. Navigation systems for the blind and
visually impaired: Past work, challenges, and open problems. Sensors (Basel,
Switzerland) 19, 15 (02 Aug 2019), 3404. https://doi.org/10.3390/s19153404
31382536[pmid].

[96] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You
only look once: Unified, real-time object detection. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 779–788.

[97] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. 2015. Faster r-cnn:
Towards real-time object detection with region proposal networks. Advances in
neural information processing systems 28 (2015), 91–99.

[98] Sebastião Rocha and Arminda Lopes. 2020. Navigation based application
with augmented reality and accessibility. In Extended Abstracts of the 2020
CHI Conference on Human Factors in Computing Systems (Honolulu, HI, USA)
(CHI EA ’20). Association for Computing Machinery, New York, NY, USA, 1–9.
https://doi.org/10.1145/3334480.3383004

[99] Ranga Rodrigo, Mehrnaz Zouqi, Zhenhe Chen, and Jagath Samarabandu. 2009.
Robust and efficient feature tracking for indoor navigation. IEEE Transactions
on Systems, Man, and Cybernetics, Part B (Cybernetics) 39, 3 (2009), 658–671.

[100] Andrey Rudenko, Luigi Palmieri, Michael Herman, Kris M Kitani, Dariu M
Gavrila, and Kai O Arras. 2020. Human motion trajectory prediction: A survey.
The International Journal of Robotics Research 39, 8 (2020), 895–935.

[101] Manaswi Saha, Alexander J Fiannaca, Melanie Kneisel, Edward Cutrell, and
Meredith Ringel Morris. 2019. Closing the Gap: Designing for the Last-Few-
Meters Wayfinding Problem for People with Visual Impairments. In The 21st
International ACM SIGACCESS Conference on Computers and Accessibility. 222–
235.

[102] Manaswi Saha, Michael Saugstad, Hanuma Teja Maddali, Aileen Zeng, Ryan
Holland, Steven Bower, Aditya Dash, Sage Chen, Anthony Li, Kotaro Hara, et al.
2019. Project sidewalk: A web-based crowdsourcing tool for collecting sidewalk
accessibility data at scale. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems. 1–14.

[103] Daisuke Sato, Uran Oh, Kakuya Naito, Hironobu Takagi, Kris Kitani, and Chieko
Asakawa. 2017. NavCog3: An evaluation of a smartphone-based blind indoor
navigation assistant with semantic features in a large-scale environment. In
Proceedings of the 19th International ACM SIGACCESS Conference on Computers
and Accessibility. 270–279.

[104] Stefano Scheggi, A Talarico, and Domenico Prattichizzo. 2014. A remote guid-
ance system for blind and visually impaired people via vibrotactile haptic feed-
back. In 22nd Mediterranean Conference on Control and Automation. IEEE, 20–23.

[105] Baoguang Shi, Mingkun Yang, Xinggang Wang, Pengyuan Lyu, Cong Yao, and
Xiang Bai. 2018. Aster: An attentional scene text recognizer with flexible
rectification. IEEE transactions on pattern analysis and machine intelligence 41, 9
(2018), 2035–2048.

[106] Sudipta N Sinha, Drew Steedly, Richard Szeliski, Maneesh Agrawala, and Marc
Pollefeys. 2008. Interactive 3D architectural modeling from unordered photo
collections. ACM Transactions on Graphics (TOG) 27, 5 (2008), 1–10.

[107] Microsoft Soundscape. 2020. A map delivered in 3D sound. https://www.
microsoft.com/en-us/research/product/soundscape/.

[108] Jin Sun and David W Jacobs. 2017. Seeing what is not there: Learning context
to determine where objects are missing. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. 5716–5724.

[109] TapTapSee. 2021. TapTapSee. https://taptapseeapp.com/.
[110] Ender Tekin and James M. Coughlan. 2010. A mobile phone application enabling

visually impaired users to find and read product barcodes. In Computers Helping
People with Special Needs, Klaus Miesenberger, Joachim Klaus, Wolfgang Zagler,
and Arthur Karshmer (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
290–295.

[111] Ender Tekin, James M Coughlan, and Huiying Shen. 2011. Real-time detection
and reading of LED/LCD displays for visually impaired persons. In 2011 IEEE
Workshop on Applications of Computer Vision (WACV). IEEE, 491–496.

[112] Nelson Daniel Troncoso Aldas, Sooyeon Lee, Chonghan Lee, Mary Beth Rosson,
John M Carroll, and Vijaykrishnan Narayanan. 2020. AIGuide: An Augmented
Reality Hand Guidance Application for People with Visual Impairments. In The
22nd International ACM SIGACCESS Conference on Computers and Accessibility.
1–13.

[113] Barbara Tversky. 1993. Cognitive maps, cognitive collages, and spatial mental
models. In Spatial Information Theory A Theoretical Basis for GIS, Andrew U.
Frank and Irene Campari (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
14–24.

[114] Prashant Verma, Kushal Agrawal, and V Sarasvathi. 2020. Indoor navigation
using augmented reality. In Proceedings of the 2020 4th International Conference
on Virtual and Augmented Reality Simulations. 58–63.

[115] Mei Wang and Weihong Deng. 2018. Deep visual domain adaptation: A survey.
Neurocomputing 312 (2018), 135–153.

[116] Yuxin Wang, Hongtao Xie, Shancheng Fang, Jing Wang, Shenggao Zhu, and
Yongdong Zhang. 2021. From Two to One: A New Scene Text Recognizer with
Visual Language Modeling Network. arXiv preprint arXiv:2108.09661 (2021).

[117] Zhihao Wang, Jian Chen, and Steven CH Hoi. 2020. Deep learning for image
super-resolution: A survey. IEEE transactions on pattern analysis and machine
intelligence (2020).

[118] Galen Weld, Esther Jang, Anthony Li, Aileen Zeng, Kurtis Heimerl, and Jon E.
Froehlich. 2019. Deep Learning for Automatically Detecting Sidewalk Ac-
cessibility Problems Using Streetscape Imagery. In The 21st International ACM
SIGACCESS Conference on Computers and Accessibility (Pittsburgh, PA, USA) (AS-
SETS ’19). Association for Computing Machinery, New York, NY, USA, 196–209.
https://doi.org/10.1145/3308561.3353798

[119] Michele A Williams, Amy Hurst, and Shaun K Kane. 2013. "Pray before you
step out" describing personal and situational blind navigation behaviors. In
Proceedings of the 15th International ACM SIGACCESS Conference on Computers
and Accessibility. 1–8.

[120] Jingyi Xie, Madison Reddie, Sooyeon Lee, Syed Billah, Zihan Zhou, Chun-hua
Tsai, and John Carroll. 2022. Iterative Design and Prototyping of Computer
Vision Mediated Remote Sighted Assistance. ACM Transactions on Computer-
Human Interaction (in press) (2022).

[121] Takuma Yagi, Karttikeya Mangalam, Ryo Yonetani, and Yoichi Sato. 2018. Future
person localization in first-person videos. In Proceedings of the IEEE Conference

https://www.microsoft.com/en-us/ai/seeing-ai
https://doi.org/10.1109/TNSRE.2006.881538
https://doi.org/10.3390/s19153404
https://doi.org/10.1145/3334480.3383004
https://www.microsoft.com/en-us/research/product/soundscape/
https://www.microsoft.com/en-us/research/product/soundscape/
https://taptapseeapp.com/
https://doi.org/10.1145/3308561.3353798


IUI ’22, March 22–25, 2022, Helsinki, Finland Lee, Yu, Xie, Billah, and Carroll

on Computer Vision and Pattern Recognition. 7593–7602.
[122] Ruijie Yan, Liangrui Peng, Shanyu Xiao, and Gang Yao. 2021. Primitive Repre-

sentation Learning for Scene Text Recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 284–293.

[123] Chris Yoon, Ryan Louie, Jeremy Ryan, MinhKhang Vu, Hyegi Bang, William
Derksen, and Paul Ruvolo. 2019. Leveraging augmented reality to create apps
for people with visual disabilities: A case study in indoor navigation. In The
21st International ACM SIGACCESS Conference on Computers and Accessibility.
210–221.

[124] Zhong-Qiu Zhao, Peng Zheng, Shou-tao Xu, and Xindong Wu. 2019. Object
detection with deep learning: A review. IEEE transactions on neural networks
and learning systems 30, 11 (2019), 3212–3232.

[125] Yu Zhong,Walter S Lasecki, Erin Brady, and Jeffrey P Bigham. 2015. Regionspeak:
Quick comprehensive spatial descriptions of complex images for blind users. In
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems. ACM, 2353–2362.

[126] Zhengxia Zou, Zhenwei Shi, Yuhong Guo, and Jieping Ye. 2019. Object detection
in 20 years: A survey. arXiv preprint arXiv:1905.05055 (2019).


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Navigational Aids for People with VI
	2.2 RSA Services for People with VI
	2.3 Use of CV in Navigation for People with VI
	2.4 Collaboration between Human and AI

	3 Identifying Navigation Challenges in RSA: Literature Review
	3.1 Challenges in Localization and Orientation
	3.2 Challenges in Obstacle and Surrounding Information Acquirement and Detection
	3.3 Challenges in Delivering Information and Interacting with Users
	3.4 Network and External Issues

	4 Identifying Navigation Challenges in RSA: User Interview Study
	4.1 Participants: RSA Users with VI
	4.2 Procedure and Data Analysis
	4.3 Findings

	5 DISCUSSION: Addressing RSA Challenges
	5.1 3D Map Construction for the RSA Use
	5.2 Collaborative Annotation for Limitation of Map
	5.3 Map-based Localization for Real-Time Locating and Tracking the User
	5.4 Interacting with 3D Maps for Efficient Information Retrieval and Delivery 
	5.5 Augmenting Video Stream

	6 Discussion: Emerging Problems in Human-AI Collaboration
	6.1 Emerging Problem 1: Making Object Detection and Obstacle Avoidance Algorithms Blind-aware
	6.2 Emerging Problem 2: Localizing Users Under Poor Networks
	6.3 Emerging Problem 3: Recognizing Digital Content on Digital Displays
	6.4 Emerging Problem 4: Recognizing Texts on Irregular Surfaces
	6.5 Emerging Problem 5: Predicting the Trajectories of Out-of-Frame Pedestrians or Objects

	7 Conclusion
	Acknowledgments
	References

