
Understanding Screen Readers’ Plugins
Farhani Momotaz

Pennsylvania State University
University Park, Pennsylvania, USA

fbm5122@psu.edu

Md Touhidul Islam
Pennsylvania State University

University Park, Pennsylvania, USA
mqi5127@psu.edu

Md Ehtesham-Ul-Haque
Pennsylvania State University

University Park, Pennsylvania, USA
mfe5232@psu.edu

Syed Masum Billah
Pennsylvania State University

University Park, Pennsylvania, USA
sbillah@psu.edu

ABSTRACT
Screen reader plugins are small pieces of code that blind users can
download and install to enhance the capabilities of their screen
readers. In this paper, we aim to understand the user experience
of screen readers’ plugins, as well as their developers, distribution
model, and maintenance. To this end, we conducted a study with
14 blind screen reader users. Our study revealed that screen reader
users rely on plugins for various reasons, e.g., to improve the us-
ability of both screen readers and application software, to make
partially accessible applications accessible, and to enable custom
shortcuts and commands. Furthermore, installing plugins is easy;
uninstalling them is unlikely; and finding them online is ad hoc,
challenging, and poses security threats. In addition, developing
screen reader plugins is technically demanding; only a handful of
people develop plugins, and they are well-recognized in the com-
munity. Finally, there is no central repository for plugins for most
screen readers, and most plugins do not receive updates from their
developers and become obsolete. The lack of financial incentives
plays in the slow growth of the plugin ecosystem. Based on our
findings, we recommend creating a central repository for all plug-
ins, engaging third-party developers, and raising general awareness
about the benefits and dangers of plugins. We believe our findings
will inspire researchers to embrace the plugin-based distribution
model as an effective way to combat application-level accessibility
issues.

CCS CONCEPTS
• Human-centered computing→ Empirical studies in acces-
sibility; Accessibility systems and tools.

KEYWORDS
plugins, add-ons, scripts, extensions, screen readers, accessibility,
blind, user study.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ASSETS ’21, October 18–22, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8306-6/21/10. . . $15.00
https://doi.org/10.1145/3441852.3471205

ACM Reference Format:
Farhani Momotaz, Md Touhidul Islam, Md Ehtesham-Ul-Haque, and Syed
Masum Billah. 2021. Understanding Screen Readers’ Plugins. In The 23rd
International ACM SIGACCESS Conference on Computers and Accessibility
(ASSETS ’21), October 18–22, 2021, Virtual Event, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3441852.3471205

1 INTRODUCTION
People who are blind usually interact with computers via screen
readers, such as NVDA [2], JAWS [1], and VoiceOver [8]. Screen
readers are special-purpose assistive technologies that narrate on-
screen visual content serially and support numerous keyboard short-
cuts to interact with graphical applications.

Screen readers rely on Operating Systems’ (OSes’) builtin ac-
cessibility support [7, 33] to narrate the textual description of an
application’s graphical user interface (GUI). Often, this accessibility
support falls short for many applications for several reasons—all of
which are traced back to how an application is developed. For ex-
ample, an application becomes partially accessible to screen readers
if the developers provided insufficient textual descriptions of indi-
vidual UI [26], or developed the application using a GUI framework
that is not fully compatible with the OS’s native accessibility sup-
port [15], or encoded information spatially which requires mouse-
only interactions [11]. In these cases, blind users who need screen
readers face undue challenges in interacting with the application.

To overcome these challenges, at least to some extent, screen
readers support plugins—small pieces of code that could extend
screen readers’ builtin functionalities or could repair application-
specific accessibility issues. Plugins are also referred to as add-
ons, add-ins, modules, extensions, or custom scripts. Usually, domain
experts with technical skills develop plugins, which they publish
online so that others can download and benefit from them. Certain
screen reader vendors (e.g., NVDA) also distribute popular plugins
as part of their original package. As such, it is likely that many
screen readers users have used screen reader plugins knowingly
or unknowingly. Despite being widely used, to the best of our
knowledge, there is no study on understanding the user experience,
usability, life-cycle, and design implication of these screen reader
plugins.

In this work, we aim to fill that void. We are motivated by a
surprising dearth of studies on this area to identify key gaps (if
any), make recommendations for best practices, and outline new
directions for future accessibility research. More specifically, we
asked the following research questions:

https://doi.org/10.1145/3441852.3471205
https://doi.org/10.1145/3441852.3471205

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Momotaz et al.

• RQ1:Why do blind users use screen reader plugins?
• RQ2: How screen reader plugins are developed, maintained,
and distributed, from the standpoint of the users?

To this end, we conducted a study with 14 blind participants. The
study revealed that plugins are used for a variety of reasons, such as
accessing partially inaccessible software, modifying screen readers’
features, and receiving additional audio feedback on keystrokes.
Furthermore, only a handful of people develop plugins, and they are
well-recognized in the community (e.g., Doug from NY, David from
https://blindhelp.net). Although most screen reader users prefer to
write their own plugin, the need for technical skills and the com-
plexity of development toolkits are prohibitive. In addition, plugins
are easy to install but difficult to find and update. Once installed,
users hardly uninstall them. Most screen readers (except for NVDA)
do not have a central repository for plugins. As a result, users face
difficulty finding “good” quality plugins — they often download
plugins from untrusted sources (e.g., unknown websites, Google
Drives), and sometimes download malware instead, compromising
their digital security. The study also revealed that the current state
of maintaining screen readers’ plugins is “no maintenance at all” —
once deployed, most plugins do not receive regular updates from
their developers and become obsolete.

Our findings implicate that plugins can be distributed to screen
reader users directly from the developers. Thus, a plugin-based
deliverymechanism could inspire accessibility researchers to deploy
their research prototype as a plugin and seek early feedback from
the blind community. Additionally, educating screen reader users
about the potential benefits and dangers of plugins is important
because plugins can be instrumental in combating accessibility and
usability issues in existing screen readers and application software.

2 BACKGROUND AND RELATEDWORK
The plugin-based architecture is commonly used in commercial
software, such as web browsers, multimedia players, rich text edi-
tors [40]. Each plugin is a small piece of code that extends the host
application’s functionality. These plugins are often neither baked
into the source code of the host application nor require access to
the source code of that application [17]. Instead, these are linked
via well-defined interfaces and extension mechanisms so that the
host application can recognize and activate a specific feature or
functionality when needed [40].

Thus, a plugin-based architecture allows a complex application
to function as a smaller but standalone product, while meeting
users’ specific needs by loading the third-party plugin (s). This
architecture also allows developers to quickly release software
upgrades or patches as plugins [17].

Popular applications usually have their online repositories con-
taining hundreds of plugins. For example, the repositories for Fire-
fox andMicrosoft Office 365 contain over 450, 000 [6] and 2, 800 [32]
plugins respectively. Compared to popular applications, the number
of screen reader plugins is relatively small. For example, the official
plugin repository [34] of NVDA contains less than 100 plugins,
whereas there exists no such repository for JAWS screen reader.

In the following subsections, we first situate our work in the
broader context of accessibility research.We then describe the usage
of application-specific plugins to enhance accessibility, followed

by browser-based plugins to increase web accessibility, and its
similarity to developing plugins in screen readers.

2.1 Accessibility Issues with Screen Readers
User interfaces (UIs) are typically designedwith the assumption that
the users have no perceptual and cognitive impairments and use a
typical set of input and output devices [24]. Thus, any mismatch
between users’ effective abilities and the underlying assumptions
seriously hampers the effectiveness of user interface design. Often,
this diversity of needs is either ignored; or addressed via a manual
redesign of the application UI; or via external assistive technologies.

Although the manual redesign approach is arguably the best [24],
it is neither feasible nor scalable—users’ abilities and preferences
may vary, which UI designers may not anticipate [10].

Fortunately, these challenges are well-addressed in the assis-
tive technology-based approach. Assistive technologies like screen
readers are designed to adapt application UIs and create a manifest
interface that users with vision impairment can perceive and ma-
nipulate [35]. For example, blind users cannot use computer mouses
to point and click on a UI because a mouse only provides a visual
feedback (e.g., the cursor) [14] which blind users cannot perceive.
Therefore, screen readers manifest 2D graphical content, suitable
for mouse-based point and click, to a 1D list, where users can select
individual UIs without using a mouse but using a keyboard’s arrow
keys.

However, this manifestation comes at the expense of user expe-
rience. Prior research reported that when the output modality of a
UI-rich application is manifested from its original form to another
modality, i.e., consuming an application aurally instead of visually,
the adaptation introduces undesired side effects, e.g., the app may
become partially accessible [26].

It is also reported that the quality of many screen readers
plateaued in the mid 2000s [28]. Since then, these technologies
have neither improved fundamentally nor kept pace with the rapid
technological changes of the post-PC era, where users own multi-
ple devices (e.g., desktops, laptops, and smartphones). For instance,
screen readers are not portable, difficult to learn, inefficient, cumber-
some to use, and do not provide a uniform interaction experience to
date [15]. Further, switching from one screen reader to another is
disruptive because one has to learn a whole slew of new interaction
procedures [16]. As such, it is unlikely that screen readers alone
could address all accessibility-related issues. That’s why plugin-
based extensible architecture has promise and potential in screen
reader design.

2.2 Application-Specific Plugins to Enhance
Accessibility

Many applications support some degree of extensibility by the end-
users through scripting, plugins, or extensions [21]. For example,
Mac OS supports AppleScript, a scripting interface to control ap-
plications and OS features. Such scripts can automate repetitive
tasks, combine features from multiple apps, and create complex
workflows to increase system-wide accessibility.

Independently of screen readers, some plugin-based frameworks
are designed to make OS-level configuration easy and accessible.
Heron et al. [27] proposed such a framework, ACCESS, that maps

https://blindhelp.net

Understanding Screen Readers’ Plugins ASSETS ’21, October 18–22, 2021, Virtual Event, USA

user inputs to user needs. User inputs such as mouse clicks and
pointer movement can be mapped to user needs, such as increasing
the delay between two clicks in double-click events, increasing the
pointer size, or highlighting the pointer location.

Researchers also proposed application-specific plugins to tackle
a single accessibility issue in isolation. For example, WebAny-
where [12] and HearSay [18] are browser plugins that enable screen
reading of webpages on public computers that do not have a screen
reader installed. Ferres et al. [22] develop a plugin for MS Excel to
generate accessible graphs in spreadsheets. The generated graphs
contain static textual descriptions of the original graphs’ content
and visual attributes as HTML tags. The users can query and nav-
igate the content of the graphs easily. Baker et al. [9] develop a
plugin for Eclipse IDE to assist blind programmers in navigating
Java source code. It constructs a hierarchical tree of the nesting
structure of a program’s source code.

While these frameworks and plugins require low-level integra-
tion with the OS and the host application, we focus on screen reader
plugins that run within the scope of a screen reader.

2.3 Browser-Based Plugins to Enhance Web
Accessibility

Most web browsers offer plugins and extensions, allowing one to
directly modify the HTML, CSS, or DOM of a webpage prior to ren-
dering it on the browser. Because of this extensibility, a plethora
of browser-based plugins are designed to enhance web accessibil-
ity [13, 23, 25, 30, 31, 36–39]. These plugins usually share three
key pieces: (i) an end-user first reports an accessibility issue; (ii)
an expert user repairs the accessibility issue by writing a plugin
or custom script using a research tool; and (iii) finally, that plu-
gin is shared with others so that future users could benefit from
the repair. Example of some repairs include providing alt-texts for
images [37–39], reordering content navigation [36], performing
website-specific customizations [13], and representing web content
for aural glancing [23]. However, unlike screen readers’ plugins,
most of these scripts and plugins are research prototypes, either
discontinued or have achieved little impact beyond the lab, and are
not widely used by the visually impaired community.

2.4 How Screen Readers Support Plugin
Development

Developing screen reader plugins is analogous to that of web
browsers’ plugins. A web browser usually exposes the HTML DOM
of a webpage to its plugin as a JavaScript object. Similarly, a screen
reader constructs a DOM-like structure of an app using the oper-
ating system’s native Accessibility API [7, 33] and exposes it to a
screen reader plugin. The syntax and semantic of this exposure
are screen reader-dependent, as specified by the plugin developer
guidelines (e.g., for NVDA [4], for JAWS [3]). A screen reader plugin
can utilize many functions of the host screen reader, e.g., obtaining
the reference of the focused UI, walking up/down in the DOM-like
structure to inject metadata to a reference representing a UI. It can
also bind new keyboard shortcuts to trigger an action (e.g., CAPS
LOCK + Alt + T to announce ‘‘Hello, World!’’), as well as
bind a new event (e.g., valueChanged) to a UI element.

3 USER STUDY
To understand our research questions, we conducted a user study
(IRB-approved) with 14 blind participants. Participants’ demograph-
ics and study details are described below.

3.1 Participants
We recruited 14 blind participants (10 males, 4 females) through
mailing lists, university mailing lists, and public posts on Facebook.
Our inclusion criteria included visually impaired adults who use
screen readers on their computers, are familiar with screen readers’
plugin, and fluent in English. The participants varied in age from
24 to 52 (M = 37, SD = 7). Most of them were expert screen
reader users and used two screen readers. They came from diverse
professional backgrounds: 2 were business entrepreneurs, 2 worked
in information technology, 3 worked for the government, 1 worked
in a non-government organization, 1 worked in student disability
service in a university, 2 in textile and apparel industry, 1 in sales,
1 was a physical therapist, and 2 were students. Participants were
geographically distributed as follows: 40% North America and 60%
South Asia. Table 1 presents their demographics.

3.2 Interview Method
The interviews were semi-structured, performed remotely via
video/audio conferencing tools such as Zoom and phone calls. Two
researchers administered the study: one conversed with the partici-
pants, while the other took notes. Following the completion of the
first five interviews, the researchers analyzed the transcripts using
an iterative coding process with initial coding and identified con-
cepts [19], categorized them, framed new questions for subsequent
interviews, and updated the concept list.

3.3 Interview Protocol and Data Analysis
After verbal consent, we began by asking participants to introduce
themselves, their history of visual impairment, their expertise in
screen readers (self-disclosed), and their use of screen reader plugins.
We noted that their self-disclosed expertise closely matched our
observation during the interview.

We believe semi-structured interviews provided us the maximum
leverage to explore an under-researched topic like screen reader
plugins systematically. This semi-structured format also allowed
participants to talk freely about their experience using screen reader
plugins.

The initial interview questions were similar to our original re-
search questions (RQs). For example, why do they use screen reader
plugins? What do they know about plugin developers? Who main-
tains plugins? What are the common places for finding plugins?

We also adapted questions under each RQ to match individual’s
expertise. A sampler of questions under RQ1 were as follows: (i) Do
you use any application that needs plugins? (ii) Why do some appli-
cations need more plugins than others? (iii) What types of features
plugins usually provide? (iv) How often do you use a plugin? and
(v) How many plugins do you use on average? Sample questions
under RQ2 included: (i) Where do you find a plugin or script? (ii)
How do you install a plugin? (iii) How do you vet a plugin? (iv)
Have you developed a plugin (why or why not)? (v) Do you want
to develop plugins by yourself (why or why not)? (vi) How often

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Momotaz et al.

Table 1: Participant demographics. LP stands for Light Perception.

ID Age/
Sex Expertise LP? History of

Blindness Profession Screen Readers

P1 39/M Expert No Advantageous Business Entrepreneur NVDA, JAWS
P2 35/M Expert Yes Advantageous IT Instructor NVDA, JAWS

P3 31/F Expert Yes Advantageous Information technology JAWS, NVDA,
VoiceOver

P4 40/M Expert Yes Congential Educator and Business
Entrepreneur

System Access,
NVDA

P5 44/M Expert No Advantageous Government employee NVDA, JAWS
P6 43/M Expert No Advantageous Government employee NVDA, JAWS
P7 28/M Expert No Advantageous Physical therapist NVDA, JAWS
P8 24/M Expert No Congential Student JAWS, NVDA
P9 40/M Beginner Yes Congential NGO worker JAWS, NVDA
P10 38/F Beginner Yes Advantageous Sales representative NVDA
P11 35/M Expert No Advantageous Student, Chessmaster JAWS, NVDA
P12 38/F Beginner No Advantageous Garment worker JAWS
P13 52/M Intermediate No Congential Government employee NVDA, JAWS

P14 40/F Expert No Congential Student Disability Service JAWS, NVDA,
VoiceOver

do you update, install, or uninstall a plugin? (vii) Is there any issue
with updating a plugin?

Towards the end, we educated some participants about existing
plugins that could address some of the issues they raised during
the interview. All interviews were audio-recorded and transcribed
for analysis. Each session lasted for an hour, and participants were
compensated with a $30 (USD) Amazon or other e-gift card. Each
interview culminated with participants making suggestions and
recommendations.

4 FINDINGS
In this section, we describe our findings emerged from the study.
Note that some participants refer screen reader plugins as add-ons
or scripts.

4.1 Why do Blind Users Use Screen Reader
Plugins?

The participants mentioned several reasons why they use plugins.
We categorize these reasons into 4 themes: blind users need plugins
to make inaccessible or partially accessible software accessible, to
modify screen readers’ existing features, to receive audio feedback
on keyboard shortcuts or commands, and to add new shortcuts to
screen readers. Overall, plugins make software applications more
usable. We elaborate on each of these themes below.

4.1.1 Plugins can Make Applications More Accessible. The partici-
pants mentioned that they search for a plugin when they realize
certain feature of an application is not accessible. For example, P1,
who uses NVDA screen reader, said: ‘When I use a software and
I find it inaccessible through NVDA, I start searching for the plug-
ins”. Several participants complained that developers often focus
on sighted users and do not fully invest in accessibility. As such,
blind users experience difficulty using most software, including the

popular ones. For example, P3, a music enthusiast, who uses JAWS
screen reader, described how plugins help her using music editing
software:

For anything musical I do – working with programs
like GarageBand, Audacity, Pro Tools, complete control
– all those music kinds of programs for playing music,
creating music, are not the most accessible programs
to start with. And there are people in the blind music
world who can also create scripts along the way so that
they become a little bit more usable.

Inaccessibility is more prevalent in web applications, e.g., “things
are not always labeled properly”, and screen readers “do not know
what to make of them”. So, screen readers often say “button, but-
ton, button”, or sometimes stay silent. A plugin “usually comes up
with some keystrokes” in these regards, and provides appropriate
metadata to screen readers.

4.1.2 Plugins can Modify Screen Readers’ Existing Feature. Some-
times, a software is accessible but provides a sub-optimal user
experience with a screen reader. Plugins can improve the usabil-
ity of such software by providing more control to the users. For
example, P8, who uses Zoom teleconferencing software for work,
explained why Zoom’s user experience is poor, even though it is
fully accessible. NVDA is “too chatty” on Zoom – it announces each
event that may occur during a Zoom meeting, such as someone
enters or leaves the meeting, someone mutes or unmutes them-
selves. Further, every time a chat message appears, which may be a
casual conversation between two attendees, NVDA reads that too.
P8 complained that with so many distracting voice outputs from
NVDA, he could not concentrate on the actual meeting. It becomes
more annoying when he shares his audio, and everyone else is also
disturbed by the excessive voice notifications. So, he uses a plugin
in NVDA that lets him configure Zoom’s notification.

Understanding Screen Readers’ Plugins ASSETS ’21, October 18–22, 2021, Virtual Event, USA

4.1.3 Plugins can Provide Audio Feedback on Keystrokes and Short-
cuts. The participants use plugins to receive simple but necessary
feedback and audio cues from screen readers. P1 presented two
examples: NVDA does not provide audio feedback on popular clip-
board command, Crtl+C, but with a plugin it provides useful feed-
back such as “copied” or “nothing was copied”. Similarly, NVDA is
quiet on VLC Media player when a media is fast-forwarded, but
with a plugin it announces the number of seconds the media was
fast-forwarded. According to P1, these plugins are very simple
scripts, but without them, he feels clueless.

4.1.4 Plugins can Add Useful Shortcuts to Screen Readers. The par-
ticipants reported that plugins could add a set of useful and “make-
sense” shortcuts to screen readers. P11, who is a professional chess
player, explained how he added a new shortcut (e.g., Crtl + 2)
to Win Board, a chess software, to report the position of a piece
backward (e.g., Knight at 2E instead of Knight at E2).

In summary, most participants stated that plugins can solve
accessibility problems and improve the usability of applications—
half (7) of the participants wished to have more plugins.

The other half who did not wish for more, 3 of them were be-
ginners, 1 was intermediate, and 3 were experts (P4, P7, P14). The
beginner and intermediate participants mentioned that they usually
interacted with a few websites and software for work, which were
accessible through their existing plugins. P7, an expert working in
healthcare, mentioned not using computers extensively and was
content with his collection of plugins. However, the circumstances
for P4 and P14 were different. They both were experts, but their
primary screen readers were System Access and VoiceOver, re-
spectively, for which the support for plugins is limited. As such,
their expectation for having more plugins was low. Furthermore,
they were financially well-off to employ sighted assistants who
could provide technical support.

4.2 How Plugins are Developed?
4.2.1 Only a Handful of People Develop Plugins. The participants
reported that only a handful of people develop plugins and they
are well-respected and well-reputed in the blind community. The
community recognizes them by their first name. For example, P3
mentioned a highly reputed blind plugin developer, named Doug,
“...he is known, he has been active for a very long time, 20-30 years
almost. He is very established and very good at what he does.”. P1
mentioned another reputed developer named David, who publishes
his plugins in https://blindhelp.net, a website popular among blind
users in South Asia. Similarly, P8 mentioned reaching out to Joseph,
who leads a team of plugin developers, to create a “Table Navigator”
plugin for NVDA. P4 also named 3 sighted plugin developers who
can be trusted but need to be paid to write a custom plugin.

Besides these reputed developers, the participants mentioned
that they need to use plugins from unknown developers, from their
personal websites, blogs, and GitHub repositories. Some of these
plugins are not up to the quality that they get from the reputed
developers.

4.2.2 Challenges of Developing Plugins. All participants were
enthusiastic about the idea of writing their own plugin. They

considered this idea “empowering” to blind users. P3 shared why
she wants to write her plugin:

I would love to. There are so many things I come across
every day that are frustrating for no reasons because if
I were sighted, I would just click click click, and good to
go. It is very frustrating and can be very demoralizing
that I need all of this help and sighted assistance when
it’s no fault of my own. It’s not that I don’t have the
cognitive ability, it’s simply that I can not see and the
person who created it didn’t think of someone like me
using it. So, yes I would definitely write scripts by myself
if I could for sure.

However, 2 participants who attempted to write a plugin before,
informed the challenges in doing so. Only P11 succeeded in writing
a JAWS script. P1, who failed to write an NVDA add-on in Python,
attributed his failure to the inaccessibility of programming IDEs
and Compilers. For programming languages like Python, accessi-
bility does not entail reading out texts (i.e., code) but the scopes,
indentations, missing variables, and other contextual information,
P1 elaborated. Neither the Editor nor the Compiler provides ade-
quate audio feedback to blind users to write their code, he added. In
fact, P1 failed to write a plugin before, with another programming
language, C++, because of the same issue – Compilers not being
accessible.

Besides accessibility issues of IDEs and Compilers, the partici-
pants who did not have a prior programming background expressed
that it would be daunting for them to learn how to code for the
sake of writing their own scripts. They were also concerned about
the steep learning curve and the return-on-investment of their time.
P11 mentioned another challenge in developing plugins as navi-
gating the lengthy plugin development guidelines from NVDA [4]
and JAWS [3]. Considering the amount of time needed to develop
programming skills and navigate the guidelines, P4 commented: ”I
probably would not. Even if I really had to, I probably would not look
at it”. P14 thinks it is unfair for blind users to learn programming
to use a partially-accessible software that most people use without
putting in an extra effort.

4.2.3 Lack of Financial Incentive. 5 participants believe that not
having financial incentives plays a vital role in the lack of enthu-
siasm to develop new plugins. P11 believes that relying on third
parties to develop plugins out of kindness is unlikely to come true.
P2 was interested in developing plugins only if it benefits his career.
In his words: I would love to start writing my own scripts if it helps
me make myself more marketable.

4.3 How Plugins are Distributed and Deployed?
4.3.1 No Centralized Plugin Repository. All participants empha-
sized that there is no central repository for plugins. Only NVDA
has a community add-ons page, where developers can upload plu-
gins, which the participants recognized as “a good sign because
it makes things easier”. However, they considered the number of
add-ons (i.e., plugins) in NVDA community page is inadequate —
many plugins they use routinely are not available there, for which
they must rely on individual developers’ websites, blogs, or GitHub
pages. The participants mentioned that they were not aware of
any central repository for other screen readers like JAWS or System

https://blindhelp.net

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Momotaz et al.

Access. Thus, finding a script for those screen readers is even more
challenging, and they described the ordeal as ad-hoc, unstructured,
and predominantly “Google Search”-driven. In fact, not having a
central repository affects the users and developers alike—the users
cannot group and compare similar plugins; the plugin-developers
cannot upload their work to a more “recognized” place.

4.3.2 Challenges in Finding the “Right” Plugin. Not having a cen-
tral repository makes it difficult for blind users to find the “right”
plugin. Unfortunately, this difficultly is further compounded by
the following factors: (i) the name of a plugin can be changed in
an update without keeping a change-log; (ii) a plugin for NVDA
does not work for JAWS (and vice versa); (iii) most plugins are
not backward compatible, i.e., the same version of a plugin may
not work for a different version of the same screen reader; and (iv)
misleading or no documentation, which is common for third-party
plugins in NVDA.

P8, who identified himself as an expert, pointed out that tech-
savvy users are mostly interested in trying out different plugins
from third-party websites, but they, too, could struggle to find the
“right” plugin at times. For example, he shared his experience of
finding a plugin named Eloquence – he originally downloaded it
from the community page of NVDA, but it stopped working after
an update. He tried to make this plugin work for a long time in vain.
Later, he discovered another version of this plugin from a different
source, an IBM website, which was functional.

4.3.3 Ad-Hoc Approaches to Find a Plugin. P8 mentioned a
Telegram1 community, where fellow blind users share Google
Drive links. Usually, these links point to zip files containing a bundle
of plugins. P1 and P3 also mentioned that they regularly check the
websites of popular plugin developers. P8 pointed out a number of
GitHub repositories where third-party developers create and store
plugins. P3 mentioned that she is fortunate to have a developer
friend who usually directs her to a website or make a plugin for
her, if needed.

Not all participants were as fortunate as P3.Most participants had
difficulty finding a plugin they need – they usually had no way of
requesting a developer to write a plugin. 4 non-expert participants
expressed their frustration as not knowing where to look at to
find a plugin they need. Their frustrations were so dire that 3
of them asked the interviewers during this study whether they
(interviewers) could help them find certain plugins.

2 participants reached out to screen reader’s vendors for plugin
support. However, their experience was mostly negative. For exam-
ple, when P2 reached to Freedom Scientific, the vendor of JAWS
screen reader, requesting a plugin, they declined.

You call Freedom Scientific and tell themwhat you want.
If they need to create a script, they will tell you how
much it’s going to cost you. Sometimes, they will just
tell you that they don’t do scripting for these tasks.

P4 also had a similar experience with the vendor of System Access.
He said, “They did not give any explanation. I am not happy about it.
I might have to find another screen reader”.

1https://telegram.org/

4.3.4 Installing Plugins is Easy. All participants stated that in-
stalling a plugin is surprisingly simple – plugin files usually have a
known extension (e.g., .exe or .nvda-addon) on which they need
to press Enter. P3 articulated this process as follows:

I go to the website, make sure this is the one I’m looking
for or a similar one. There should be an executable file.
I will download it, save it, go to the folder where I saved
it, and press Enter on it. Usually, that does the trick, like
bringing up the wizard or self-install and say get ready.
Next time I run the program, these scripts are already
in place. It is a straightforward process.

Installing a plugin is so easy and convenient that participants
preferred plugins for solving their accessibility issues over other
techniques.

4.3.5 Uninstalling Plugins is Unlikely. The participants mentioned
that the Plugin Manager in their screen readers supports disabling
or uninstalling a plugin, but they expressed less to no interest in
doing so. For instance, P1 never uninstalled any of his plugins, even
though some of those were unnecessary. When asked, P1 replied
that uninstalling a plugin is tricky—one needs to remember the
name of the plugin to uninstall it. But like most participants, he
often forgets the association of a plugin’s name to its function after
some time and fears uninstalling a wrong one. On a separate note,
he informed that NVDA introduced a plugin that can check the
compatibility of installed plugins, and notifies if a plugin becomes
unsupported in the current version of the screen reader. However,
it does not remove those (unsupported) plugins automatically.

We note that unnecessary plugins can listen to certain keyboard
shortcuts or overlap with a newly installed plugin, causing unde-
sirable accessibility issues. In sum, once installed, it is unlikely that
participants uninstall a plugin.

4.3.6 Insufficient Plugins for Non-native English Speakers. 4 partic-
ipants, who needed Text-to-Speech support for dual languages,
had difficulty finding plugins that work for non-Latin scripts. They
experienced a similar problem with plugins for recognizing optical
characters (OCR) in non-Latin scripts. P6 stressed the lack of plu-
gins to support non-Latin languages in general. He once reached
out to Google’s regional development head regarding OCR issues
but received no response.

4.4 How Plugins are Maintained?
One of the recurrent themes throughout our interviews was the
maintenance, updates, and compatibility of plugins. All participants
complained that the plugins are not well-maintained. Once a plu-
gin is distributed, it is hardly maintained or updated; and users
have nowhere to report bugs. Without maintenance, most plugins
become unusable after some time.

P3 pointed out a deeper issue with plugin development—most
plugins are developed on ad-hoc basis, and the developers have no
incentive to maintain their plugins after deployment. As a result,
many plugins do not receive updates to work with the newer ver-
sions of a screen reader. Sometimes, a plugin receives updates, but
breaks some functionalities and causes compatibility issues.

P1 and P8 reported that when NVDA migrated from Python 2 to
Python 3 (v.19.3), most plugins in their systems became stale. But

https://telegram.org/

Understanding Screen Readers’ Plugins ASSETS ’21, October 18–22, 2021, Virtual Event, USA

P1 was yet to give up his plugin collection, thus reverted back to
NVDA v.19.2, despite knowing the benefits of the newer version.
He recounted that moment as follows:

The plugins I use, are not updated with the versions
of NVDA. That is the reason I don’t update NVDA. ...
I will lose what I already have ... The thing is, these
plugins support NVDA up to version 19.2. Basically,
these plugins are written by third-party developers. If
they do not update their plugins, no one else does.

The participants also mentioned that sometimes a plugin no
longer work when the operating system or application software
gets updated. P6 provided an example about a Railway service app
that broke with JAWS after getting updated.

4.4.1 Quality Control of Plugins. The participants complained
about “so many” poor quality plugins, i.e., plugins that do not
work properly, and have missing shortcuts or unassigned shortcuts.
P3 and P8 mentioned installing several plugins before finding the
one that worked as described. P4 identified a memory leak problem
with a plugin in System Access when using Microsoft Excel.

Most participants were frustrated by the fact that there is not
much effort to ensure the quality of plugins. Only NVDA checks the
quality of plugins before posting them on their community page.
However, this effort is not sufficient, because users install plugins
from other sources that do not ensure quality. Moreover, there is no
such community page for other popular screen readers like JAWS
or System Access. P1 emphasized that all plugins must go through a
review process. But he was not specific about the reviewer(s) when
asked.

4.4.2 Rating System for Plugins. The participants wished to have a
rating system for plugins to foster trust. P4 described a hypothetical
system, where users could upvote a useful plugin. According to
him, users should create a poll about a plugin before using it. Other
users, who used that plugin, could vote for it. A higher rating (e.g.,
“50 people found this plugin helpful”) would indicate a good-quality
plugin.

4.5 Usability Issues of Plugins
4.5.1 Poor Documentation. The participants indicated that most
plugins do not have proper documentation. P8, who received sev-
eral plugins inside a zip folder, reported getting no descriptions
or documentation of those plugins. He also mentioned that many
plugins do not assign any hotkeys (i.e., shortcuts) by default, and
the user must assign hotkeys to use them for the first time. Unfor-
tunately, developers often do not provide enough documentation
on how to assign a hotkey. Consequently, these plugins become
useless.

Some participants tried plugins with pre-assigned shortcuts.
However, without a description, they failed to execute the short-
cuts, thereby rendering those plugins equally useless. Surprisingly,
some participants tried plugins with pre-assigned shortcuts, plus
a description of shortcuts, yet, they found those plugins useless
because shortcuts do not function the way they were described.

In general, we found it hard for blind users to configure a plugin.
For example, P1 tried to configure Dual Voice plugin in NVDA but
failed, even though he followed the documentation. P8 expressed

difficulty in configuring Table Navigator plugin in NVDA— the
documentation instructed to set an action key, which he failed to
find. He described the problem as follows:

So, the problem is to find out what are the hotkeys and
how to assign them. Even if I assign something, I need
to know if it is going to collide with another or not.
So there is no direct connection between the users and
contributors. Maybe someone is uploading it to GitHub,
working on it, and then it becomes available elsewhere.
But there is no plan for how to use it, how to assign new
hotkeys, whether it is contradictory or not.

4.5.2 Introducing New Shortcuts. We note that blind users need to
memorize numerous keyboard shortcuts to efficiently interact with
a screen reader. Unfortunately, using a new plugin implies adding a
new set of shortcuts in their shortcut repertoire. Sometimes, these
new shortcuts could conflict with existing shortcuts. Furthermore,
these shortcuts might be unconventional, making them difficult to
memorize.

The issue of multiple plugins having the same shortcut came
up often in our study. To resolve such conflicts, the participants
reported uninstalling the newly installed plugin. Occasionally, they
uninstalled a less useful one from their existing plugins to keep the
new plugin.

There is no guideline on how developers should assign shortcuts
in a plugin. In this regard, P3 disappointingly said, ”Nothing is
universal, there is no established code. Every program, every website,
every app used to have their own idea of keyboard shortcuts.” Also,
there is no easy way to manage screen readers’ built-in shortcuts
along with new shortcuts offered by the installed plugins. The
participants identified these “new” shortcuts as the pain-point of
using plugins.

4.5.3 Accessibility being Ignored during App Development. 4 partic-
ipants stated that the application developers are not always con-
cerned about making their apps accessible. P6 was frustrated and
said, “People who build software, they do not build software for people
like us”. P12 believes that the minority of the users with disabili-
ties could be a contributing factor. P11 urges on developing strong
advocacy for people with disabilities. In his own words:

We need strong leadership to promote and maintain
our ideas and causes. Consider a central website that
would list all available screen reader plugins and a
tool that could guide people to build new plugins. A
third necessary thing would be advocacy. Think about
a scenario where making a script will not make the
software accessible, such as using graphics in place of
texts. The task of this advocacy group would be to let
developers know that their software is not accessible
because of their fault.

4.6 Security Issues with Plugins
Because of the unstructured distribution of plugins, it is possible
to package malware as plugins. In fact, all participants were con-
cerned about mixing plugins with malware because most plugins
are distributed without any security check.

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Momotaz et al.

To vet a plugin, P3 stated that she considers plugins with very
poor documentation, including typos, grammatical errors, and mis-
leading descriptions, as potential malware. P8 indicated that he
looked at a developer’s history to vet their plugins. He reminded
that most of his peers were unaware of the security risk of using
plugins contained in a zip folder. He additionally shared his experi-
ence of being a victim of ransomware, giving away the full control
of his computer to a hacker who provided an executable file in the
name of a plugin. With frustration, he said, “My Facebook, Skype,
Gmail, and about 350 GB of data were all gone”.

4.6.1 Preventive Measures. The participants reported the following
measures to protect themselves from potential malware in the guise
of plugins: (i) relying on trusted friends (P3, P14); (ii) relying on
word-of-mouth from the community (P3, P8); (iii) downloading
plugins from trusted developers (P1, P3, P8, P14); (iv) looking for
typos and inconsistencies in a plugin’s description (P3, P14); and
(v) checking the history of a plugin developer (P3, P8). P4 believes
“it is a bad idea” to install plugins from unknown sources without
checking for malware.

5 RECOMMENDATIONS
5.1 Raising Awareness about Screen Reader

Plugins
Due to our inclusion criterion that a participant should be familiar
with screen readers’ plugins, we found that most participants in
our study were expert screen reader users who are well-aware
of plugins. However, participants who were non-experts, did not
realize that plugins could be shipped as part of their screen readers,
and theywere already using some of these plugins without knowing.
A few participants reported installing malware instead of a plugin
and one also reported getting scammed by someone who promised
to help him out with a plugin. As such, we realize that there is
a big value in educating blind users about plugins, their benefits,
and potential dangers. An equally important step is to make them
aware of the security risks of certain plugins, how to flag them, and
best practices in online safety.

5.2 Building a Central Plugin Store
We found a pressing need for a central repository to store, distrib-
ute, and update plugins. Thus, we recommend building a central
repository for all available plugins, categorized by screen readers
and their versions. In this store, all plugins should have a rating
based on their quality, merits, and usefulness. In addition to a rat-
ing system, we also suggest each plugin to have have a clear and
informative description, possible security issues, documentation
on shortcuts, and a simple tutorial showcasing its functionalities.
In this regard, we note that the community add-on page2 of NVDA
is a good starting point. We can draw further inspiration from the
App Store3 for iOS apps. Like the apps in App Store, the plugins
in this store should receive automatic updates without causing
compatibility issues.

2https://addons.nvda-project.org/index.en.html
3https://www.apple.com/app-store/

5.3 Engaging Third-Party Developers
Since the number of third-party plugin developers is limited, and
most of themmaintain their ownwebsites, blind users often struggle
to find certain plugins online. To alleviate this problem, there should
be a central website or may even be a certain portion of the plugin
store that would contain all the necessary information associated
with the known plugin developers. Like plugins, the developers
should have their own rating too. The system we suggest should
also contain the contact information of the developers so that a
user can reach out to them if needed.

We also found some of our participants are willing to purchase a
plugin if it is useful. Thus, a trusted, easy-to-navigate, and accessible
transaction system should also be in place so that users could send
money to the plugin developers. We also need a standard set of
rules and regulations to manage these interactions.

5.4 Listing Third-Party Websites
The participants spoke about third-party websites, forums, GitHub
repositories that they found useful when looking for a plugin. In-
corporating these third-party websites in a system is important.
Thus, we believe that there should be a central website or a portion
of the plugin store to contain the links to all these websites, as well
as their helpfulness ratings. Some participants also reported the
unusually long waiting times to get their queries answered. We
believe that introducing financial incentives would encourage more
people to help out on these websites and reduce the waiting time
for the users.

5.5 Encouraging Individual Plugin
Development

Almost all of our participants were interested in developing their
own plugins. However, they reported a number of issues that pre-
vent them from trying to do so. The most common issues they
reported were the steep learning curve and the extensive plugin
developer’s guide. Instead of going through 20- to 30-page long
documentation, we recommend to have a step-by-step dialog-based
system that could guide them to develop their own plugin.

6 DISCUSSION
Our study revealed that plugins are effective in addressing
application-specific accessibility issues. However, only a handful
of people develop plugins, and they are well-recognized in the
blind community. Usually, these developers first release a plugin in
their blog sites, then online forums, and GitHub. If enough users
download a plugin and provide positive feedback, screen reader
vendors digest that plugin and distribute it as part of the main
product bundle. Most participants consider that plugins are useful.
In some cases, plugins solved a certain problem that they face; in
other cases, plugins just made them more productive. Thus, we
believe a good quality plugin can have a large-scale impact on the
blind community.

Since installing a plugin is easy for blind users, we are intrigued
by this mode of delivering patches that can address various software
accessibility issues. When blind users face certain accessibility is-
sues with an application, they often need immediate solution rather
than waiting for the screen reader developers to fix, presumably in

Understanding Screen Readers’ Plugins ASSETS ’21, October 18–22, 2021, Virtual Event, USA

the next release cycle. Plugins, in contrast, could be a fast, effective
alternative in this matter.

Designing a centralized, trustworthy plugin store for the blind
community poses an open research challenge. We believe that part
of this challenge is addressed by research in community-based
recommendation system [20], peer-production [5], and App Store
review guideline [29].

The hunt for a plugin was identified as a major hurdle. The
participants mentioned no winning strategy—they needed to search
around different websites, including personal blogs, online forums,
and social media. They also mentioned that it is impossible to check
the validity of a particular plugin without installing it first. They
only rely on the descriptions provided by plugin developers to make
a conscious decision on whether they would install it. Sometimes,
they rely on word-of-mouth or the reputation of a plugin developer.
These strategies and and challenges pose an interesting research
problem for security researchers.

Keeping the installed plugins updated is challenging. Many plug-
ins do not receive regular updates from the developers and become
obsolete as soon as the screen reader or the application updates.
This finding is consistent with the literature [15] and is a common
phenomenon with assistive technologies. We believe that while
eliminating the need for retrofitting an application via screen reader
plugins would be ideal, it is a laudable goal and unlikely to happen
in the near future. Hence, accessibility researchers should embrace
the plugin-based distribution model and focus on improving this
model.

Accessibility researchers who work on making screen readers
better canmake their workmore reachable if they can create plugins
based on their prototype. This would serve two purposes: firstly, it
would serve as a test run for the work the researchers have done;
secondly, it could help blind users in need. If the researchers can
make their plugins available to the central repository, the users
could easily find these plugins and can rate them accordingly.

Limitation.Most participants in the study were experts due to
our inclusion criteria (e.g., familiarity with screen readers’ plu-
gin). Without this criterion, we were afraid that we could not have
gained a deeper insight about the ecosystem of plugins. As such,
our current findings lacked input from those who are not familiar
with screen reader plugins. However, we believe that the impact of
not having their inputs is small because the plugin literacy among
general screen reader users is low. As an example, our study re-
vealed that non-expert participants who were aware of plugins,
were unaware of many aspects of plugins (e.g., some plugins are
shipped with screen readers).

7 CONCLUSION
In this paper, we aim at understanding the screen readers’ plug-
ins. To that end, we conducted a study with 14 blind users. Our
study revealed that plugins could enhance the capabilities of screen
readers in making applications more accessible and usable. While
finding these plugins is challenging, the participants reported the
installation to be very easy. In addition, all participants stated that
when developed properly, plugins can be valuable parts of screen
readers. The study also revealed that the current state of maintain-
ing screen readers’ plugins is “no maintenance at all”. Furthermore,

plugins have issues with availability, compatibility, unstructured
distribution, poor documentation, and security risks. Finally, we
found a big gap between the plugin developers and the end-users.

To make screen reader plugins more effective, we recommend
creating a central repository, a rating system, and a financial model.
Furthermore, we envision a system providing step-by-step instruc-
tions to blind users that could empower them to create their own
plugins. In the future, we will conduct a larger-scale analysis on
existing plugins to sketch out a community-based central plugin
repository that is secure, accessible, and well-maintained. Making
the plugin-based content distribution more streamlined is also left
for future research.

ACKNOWLEDGMENTS
We thank anonymous reviewers for their insightful feedback. Re-
search reported in this publication was supported in part by Na-
tional Eye Institute (NEI) of the National Institutes of Health
(NIH) under award number R01EY03008501A1 (subaward num-
ber 87527/2/1159967). The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.

REFERENCES
[1] 2018. What’s New in JAWS 2018 Screen Reading Software. Retrieved

September 19, 2018 from https://www.freedomscientific.com/downloads/JAWS/
JAWSWhatsNew

[2] 2020. NV Access. https://www.nvaccess.org/. (Accessed on 09/20/2018).
[3] 2021. JAWS Script Developer Guide. https://support.freedomscientific.com/

Content/Documents/Other/ScriptManual/01-0_Introduction.htm
[4] 2021. NVDA Add-on Developer Guide. https://github.com/nvdaaddons/

devguide/wiki/NVDA%20Add-on%20Development%20Guide
[5] 2021. Peer Production. https://wiki.p2pfoundation.net/Peer_Production
[6] Addons.mozilla.org (AMO). 2020. Add-ons for Firefox. https://addons.mozilla.

org/en-US/firefox/. Accessed: 2020-06-29.
[7] Apple. 2011. NSAccessibility. https://developer.apple.com/documentation/appkit/

accessibility_for_macos/nsaccessibility [Accessed: 2020-06-29].
[8] Apple Inc. 2020. VoiceOver. https://www.apple.com/accessibility/osx/voiceover/.
[9] CatherineM. Baker, Lauren R.Milne, and Richard E. Ladner. 2015. StructJumper: A

Tool to Help Blind Programmers Navigate and Understand the Structure of Code.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing
Systems (Seoul, Republic of Korea) (CHI ’15). Association for Computing Machin-
ery, New York, NY, USA, 3043–3052. https://doi.org/10.1145/2702123.2702589

[10] Eric Bergman and Earl Johnson. 1995. Towards accessible human-computer
interaction. Advances in human-computer interaction 5, 1 (1995), 87–114.

[11] Jeffrey P. Bigham. 2007. Accessmonkey: enabling and sharing end user ac-
cessibility improvements. SIGACCESS Access. Comput. 89 (2007), 3–6. https:
//doi.org/10.1145/1328567.1328568

[12] Jeffrey P. Bigham, Wendy Chisholm, and Richard E. Ladner. 2010. WebAnywhere:
experiences with a new delivery model for access technology. In Proceedings of
the 2010 International Cross Disciplinary Conference on Web Accessibility (W4A).
ACM, 1806007, 1–4. https://doi.org/10.1145/1805986.1806007

[13] Jeffrey P Bigham and Richard E Ladner. 2007. Accessmonkey: a collaborative
scripting framework for web users and developers. In Proceedings of the 2007
international cross-disciplinary conference on Web accessibility (W4A). 25–34.

[14] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Speed-Dial: A Surrogate Mouse for Non-Visual Web Browsing. In Proceedings of
the 19th International ACM SIGACCESS Conference on Computers and Accessibility.
ACM, 3132531, 110–119. https://doi.org/10.1145/3132525.3132531

[15] Syed Masum Billah, Vikas Ashok, Donald E. Porter, and I.V. Ramakrishnan. 2017.
Ubiquitous Accessibility for People with Visual Impairments: Are We There Yet?.
In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems.
ACM, 5862–5868. https://doi.org/10.1145/3025453.3025731

[16] Syed Masum Billah, Donald E. Porter, and I. V. Ramakrishnan. 2016. Sinter:
low-bandwidth remote access for the visually-impaired. In Proceedings of the
Eleventh European Conference on Computer Systems. ACM, 2901335, 1–16. https:
//doi.org/10.1145/2901318.2901335

[17] Dorian Birsan. 2005. On plug-ins and extensible architectures. Queue 3, 2 (2005),
40–46.

https://www.freedomscientific.com/downloads/JAWS/JAWSWhatsNew
https://www.freedomscientific.com/downloads/JAWS/JAWSWhatsNew
https://www.nvaccess.org/
https://support.freedomscientific.com/Content/Documents/Other/ScriptManual/01-0_Introduction.htm
https://support.freedomscientific.com/Content/Documents/Other/ScriptManual/01-0_Introduction.htm
https://github.com/nvdaaddons/devguide/wiki/NVDA%20Add-on%20Development%20Guide
https://github.com/nvdaaddons/devguide/wiki/NVDA%20Add-on%20Development%20Guide
https://wiki.p2pfoundation.net/Peer_Production
 https://addons.mozilla.org/en-US/firefox/
 https://addons.mozilla.org/en-US/firefox/
https://developer.apple.com/documentation/appkit/accessibility_for_macos/nsaccessibility
https://developer.apple.com/documentation/appkit/accessibility_for_macos/nsaccessibility
https://www.apple.com/accessibility/osx/voiceover/
https://doi.org/10.1145/2702123.2702589
https://doi.org/10.1145/1328567.1328568
https://doi.org/10.1145/1328567.1328568
https://doi.org/10.1145/1805986.1806007
https://doi.org/10.1145/3132525.3132531
https://doi.org/10.1145/3025453.3025731
https://doi.org/10.1145/2901318.2901335
https://doi.org/10.1145/2901318.2901335

ASSETS ’21, October 18–22, 2021, Virtual Event, USA Momotaz et al.

[18] Yevgen Borodin, Faisal Ahmed, Muhammad Asiful Islam, Yury Puzis, Valentyn
Melnyk, Song Feng, I. V. Ramakrishnan, and Glenn Dausch. 2010. Hearsay: a new
generation context-driven multi-modal assistive web browser. In International
World Wide Web Conference (WWW’10). 1233–1236.

[19] A. Bryman and R.G. Burgess. 1994. Analyzing Qualitative Data. Routledge.
https://books.google.com/books?id=KQkotSd9YWkC

[20] Debajit Datta, Navamani T M, and Rajvardhan Deshmukh. 2020. Products and
Movie Recommendation System for Social Networking Sites. International Journal
of Scientific & Technology Research 9 (10 2020), 262–270.

[21] James R. Eagan, Michel Beaudouin-Lafon, and Wendy E. Mackay. 2011. Cracking
the Cocoa Nut: User Interface Programming at Runtime. In Proceedings of the
24th Annual ACM Symposium on User Interface Software and Technology (Santa
Barbara, California, USA) (UIST ’11). Association for Computing Machinery, New
York, NY, USA, 225–234. https://doi.org/10.1145/2047196.2047226

[22] Leo Ferres, Petro Verkhogliad, Gitte Lindgaard, Louis Boucher, Antoine Chretien,
and Martin Lachance. 2007. Improving Accessibility to Statistical Graphs: The
IGraph-Lite System. In Proceedings of the 9th International ACM SIGACCESS
Conference on Computers and Accessibility (Tempe, Arizona, USA) (Assets ’07).
Association for Computing Machinery, New York, NY, USA, 67–74. https://doi.
org/10.1145/1296843.1296857

[23] Prathik Gadde and Davide Bolchini. 2014. From Screen Reading to Aural Glancing:
Towards Instant Access to Key Page Sections. In Proceedings of the 16th Interna-
tional ACM SIGACCESS Conference on Computers & Accessibility (Rochester, New
York, USA) (ASSETS ’14). Association for Computing Machinery, New York, NY,
USA, 67–74. https://doi.org/10.1145/2661334.2661363

[24] Krzysztof Gajos and Daniel S. Weld. 2004. SUPPLE: Automatically Generating
User Interfaces. In Proceedings of the 9th International Conference on Intelligent
User Interfaces (Funchal, Madeira, Portugal) (IUI ’04). Association for Computing
Machinery, New York, NY, USA, 93–100. https://doi.org/10.1145/964442.964461

[25] Shuai Hao, Bin Liu, Suman Nath, William GJ Halfond, and Ramesh Govindan.
2014. PUMA: programmable UI-automation for large-scale dynamic analysis of
mobile apps. In Proceedings of the 12th annual international conference on Mobile
systems, applications, and services. 204–217.

[26] Kip Harris. 2006. Challenges and solutions for screen reader/I.T. interoperability.
SIGACCESS Access. Comput. 85 (2006), 10–20. https://doi.org/10.1145/1166118.
1166120

[27] Michael Heron, Vicki L. Hanson, and Ian W. Ricketts. 2013. ACCESS: A Technical
Framework for Adaptive Accessibility Support. In Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems (London, United
Kingdom) (EICS ’13). ACM, New York, NY, USA, 33–42. https://doi.org/10.1145/
2494603.2480316

[28] Chris Hofstader. [n.d.]. The Death Of Screen Reader Innovation. https://www.
chrishofstader.com/the-death-of-screen-reader-innovation/.

[29] Ana Manzano León, Cesar Bernal Bravo, and Antonia Rodríguez Fernández. 2017.
Review of Android and iOS tablet apps in Spanish to improve reading and writing
skills of children with dyslexia. Procedia-Social and Behavioral Sciences 237 (2017),
1383–1389.

[30] Gilly Leshed, Eben M Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
automating & sharing how-to knowledge in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 1719–1728.

[31] Greg Little, Tessa A. Lau, Allen Cypher, James Lin, Eben M. Haber, and Eser Kan-
dogan. 2007. Koala: Capture, Share, Automate, Personalize Business Processes on
the Web. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (San Jose, California, USA) (CHI ’07). Association for Computing Ma-
chinery, New York, NY, USA, 943–946. https://doi.org/10.1145/1240624.1240767

[32] Microsoft. 2020. Business Apps – Microsoft AppSource. https://appsource.
microsoft.com/en-us/marketplace/apps?src=office&product=office. Accessed:
2020-06-29.

[33] Microsoft Inc. 2020. UI Automation Overview. http://msdn.microsoft.com/en-
us/library/ms747327.aspx

[34] NVAccess. 2020. nvda/source/appModules at master – nvaccess/nvda – GitHub.
https://github.com/nvaccess/nvda/tree/master/source/appModules. Accessed:
2020-06-29.

[35] Robert Reimann, Alan Cooper, David Cronin, and Chris Noessel. 2014. About
Face: The Essentials of Interaction Design, 4th Edition.

[36] Daisuke Sato, Masatomo Kobayashi, Hironobu Takagi, and Chieko Asakawa.
2009. What’s next? a visual editor for correcting reading order. In IFIP Conference
on Human-Computer Interaction. Springer, 364–377.

[37] Daisuke Sato, Hironobu Takagi, Masatomo Kobayashi, Shinya Kawanaka, and
Chieko Asakawa. 2010. Exploratory analysis of collaborative web accessibility
improvement. ACM Transactions on Accessible Computing (TACCESS) 3, 2 (2010),
1–30.

[38] Hironobu Takagi, Shinya Kawanaka, Masatomo Kobayashi, Takashi Itoh, and
Chieko Asakawa. 2008. Social accessibility: achieving accessibility through
collaborative metadata authoring. In Proceedings of the 10th international ACM
SIGACCESS conference on Computers and accessibility. 193–200.

[39] Hironobu Takagi, Shinya Kawanaka, Masatomo Kobayashi, Daisuke Sato, and
Chieko Asakawa. 2009. Collaborative web accessibility improvement: challenges
and possibilities. In Proceedings of the 11th international ACM SIGACCESS confer-
ence on Computers and accessibility. 195–202.

[40] ReinhardWolfinger. 2008. Plug-in architecture and design guidelines for customiz-
able enterprise applications. In Companion to the 23rd ACM SIGPLAN conference
on Object-oriented programming systems languages and applications. 893–894.

https://books.google.com/books?id=KQkotSd9YWkC
https://doi.org/10.1145/2047196.2047226
https://doi.org/10.1145/1296843.1296857
https://doi.org/10.1145/1296843.1296857
https://doi.org/10.1145/2661334.2661363
https://doi.org/10.1145/964442.964461
https://doi.org/10.1145/1166118.1166120
https://doi.org/10.1145/1166118.1166120
https://doi.org/10.1145/2494603.2480316
https://doi.org/10.1145/2494603.2480316
https://www.chrishofstader.com/the-death-of-screen-reader-innovation/
https://www.chrishofstader.com/the-death-of-screen-reader-innovation/
https://doi.org/10.1145/1240624.1240767
 https://appsource.microsoft.com/en-us/marketplace/apps?src=office&product=office
 https://appsource.microsoft.com/en-us/marketplace/apps?src=office&product=office
http://msdn.microsoft.com/en-us/library/ms747327.aspx
http://msdn.microsoft.com/en-us/library/ms747327.aspx
 https://github.com/nvaccess/nvda/tree/master/source/appModules

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Accessibility Issues with Screen Readers
	2.2 Application-Specific Plugins to Enhance Accessibility
	2.3 Browser-Based Plugins to Enhance Web Accessibility
	2.4 How Screen Readers Support Plugin Development

	3 User Study
	3.1 Participants
	3.2 Interview Method
	3.3 Interview Protocol and Data Analysis

	4 Findings
	4.1 Why do Blind Users Use Screen Reader Plugins?
	4.2 How Plugins are Developed?
	4.3 How Plugins are Distributed and Deployed?
	4.4 How Plugins are Maintained?
	4.5 Usability Issues of Plugins
	4.6 Security Issues with Plugins

	5 Recommendations
	5.1 Raising Awareness about Screen Reader Plugins
	5.2 Building a Central Plugin Store
	5.3 Engaging Third-Party Developers
	5.4 Listing Third-Party Websites
	5.5 Encouraging Individual Plugin Development

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

