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ABSTRACT
This paper explores how blind and sighted individuals perceive
real and spoofed audio, highlighting differences and similarities
between the groups. Through two studies, we find that both groups
focus on specific human traits in audio–such as accents, vocal
inflections, breathing patterns, and emotions–to assess audio au-
thenticity. We further reveal that humans, irrespective of visual
ability, can still outperform current state-of-the-art machine learn-
ing models in discerning audio authenticity; however, the task
proves psychologically demanding. Moreover, detection accuracy
scores between blind and sighted individuals are comparable, but
each group exhibits unique strengths: the sighted group excels at
detecting deepfake-generated audio, while the blind group excels
at detecting text-to-speech (TTS) generated audio. These findings
not only deepen our understanding of machine-manipulated and
neural-renderer audio but also have implications for developing
countermeasures, such as perceptible watermarks and human-AI
collaboration strategies for spoofing detection.
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Social aspects of security and privacy; •Computingmethodologies
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1 INTRODUCTION
Humans primarily communicate via speech, which contains unique
biometric data characterized by the vocal tract shape, larynx size,
and other voice production elements [32, 62]. Accent, intonation,
pronunciation, and vocabulary further distinguish individuals [32].
Consequently, speech features have grown vital for biometric au-
thentication, especially in automatic speaker verification (ASV)
systems [29, 43, 57, 59]. These systems, renowned for conveniently
identifying individuals through voice, are prevalent in telebanking,
smart speakers, and call centers. The rise of artificial intelligence
(AI), particularly generative AI tools like [18, 53], blurs the line
between reality and fabrication [52]. Soon, the average person may
struggle to discern truth in the face of AI-generated photos, audio,
text, and video [41].

This development poses a danger to all; however, blind indi-
viduals face a particular disadvantage because they must deter-
mine the authenticity of a video clip based solely on its audio
channel, while sighted users can analyze both audio and video
channels. For instance, sighted individuals can detect inconsistent
lighting, shadows, and reflections in the video or observe unnatu-
ral facial movements, expressions, and blinking that do not align
with speech [6, 22, 44]. Thus, it is crucial to investigate whether
the audio channel alone provides sufficient information for blind
individuals to assess the authenticity of an audio clip.

This paper aims to investigate what qualities (if any), when
present in the audio, allow blind individuals to perceive the audio
as spoken by a real human (hereafter referred to as bona fide) or
manipulated by an adversary (spoofed, hereafter). Currently, four
different techniques exist for speech manipulation: i) impersonation:
the adversary alters their voice to resemble that of the target person;
ii) replay: the adversary records the target person’s voice, presum-
ably surreptitiously, and replays it to fake that person’s identity; iii)
speech synthesis: the adversary generates entirely artificial speech
signals using rule-based Text-to-Speech (TTS) engines or learning-
based AI techniques (e.g., deep fake audio); and iv) voice conversion:
the adversary uses a system that converts their natural speech to
mimic the speech of the target speaker [36].

The prevalence of impersonation remains somewhat uncertain
due to the involvement of trained human vocal actors; however, the
remaining three spoofing techniques are technology-driven and
thus widespread. Replay is the most common and straightforward
technique to implement, followed by speech synthesis using TTS,
voice conversion, and more recently, speech synthesis with deep
fake [37, 59]. This paper focuses on technology-driven spoofing
techniques. Specifically, we pose the following research questions
(RQs):

https://doi.org/10.1145/3613904.3642817
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• RQ1: How do blind individuals determine whether an audio
clip is bona fide or spoofed, and what attributes (if any) con-
tribute to their decision-making process?

• RQ2: How, if at all, does the decision-making process of blind
individuals differ from that of sighted individuals?

To this end, we employed a mixed-method approach. First, we
conducted a one-on-one study with 12 blind participants, during
which participants assessed 63 challenging audio clips as bona fide
or spoofed, and walked us through their decision-making processes.
We define challenging audio clips as those that the current state-
of-the-art anti-spoofing binary classifiers misclassify with high
confidence (i.e., detection accuracy: 0%). Readers can also listen to
some of these audio clips from this anonymized YouTube playlist1.
The exact configuration of each audio clip is available in the video
description on YouTube. Second, we conducted an online survey
with 96 challenging audio clips, where 60 participants – 30 blind
and 30 sighted – rated whether clips are bona fide or spoofed, and
provided us with an open-ended response explaining their decisions.
Finally, we analyzed the findings from both studies, consolidated
the results, and discussed the implications of our results, as well as
proposed new design considerations to address the broader, societal
impacts of spoofed audio.

Our interview study reveals that blind individuals attend to spe-
cific human traits in the audio (Section 4). These traits include the i)
speaker’s accents (e.g., uncommon pronunciation and international
accents); ii) vocal inflection (e.g., monotone, intonation, emphasis,
fluctuation); iii) the sign of liveliness (e.g., the presence of breathing
and lip movement sounds, as well as the irregular pausing patterns);
iv) the presence of emotion in the audio (e.g., sadness and boredom
are associated with spoofed audio and excitement with bona fide
audio); v) the presence of human errors (e.g., mistakes, mispronuncia-
tions, and use of filler words); and vi) acoustic properties (e.g., audio
quality, and the presence and position of echo and reverberation).

Our survey study, with twice the participants and data points,
corroborated our initial findings. Both blind and sighted participants
focus on human traits in audio for authenticity. However, their
mental models differed: blind participants excelled at identifying
TTS audio (91% vs. 84%), while sighted participants were better at
detecting deep fake audio (71% vs. 58%). Both groups found replayed
audio challenging, with sighted individuals more accurate at close
range and blind individuals at longer distances.

Our findings yield key insights. First, both blind and sighted
individuals struggle with audio authenticity, showing less than
65% accuracy in recognizing bona fide audio. This implies cogni-
tive strain. Second, both groups apply social norms to judge audio,
attending to emotional and physiological cues. With evolving spoof-
ing techniques, the distinction between human and AI-origin audio
will blur, shifting focus toward risk minimization. Third, human
judgment surpasses current state-of-the-art (SOTA) models. Thus,
short-term prospects lie in developing AI models that isolate hu-
man traits from audio, breaking down spoofing countermeasures
into digestible components, and combining these for more effective
solutions. Lastly, AI watermarking must evolve to be more human-
focused, considering perceptible cues that both blind and sighted

1 https://www.youtube.com/playlist?list=PLf_Q2-kgSq_Dr44vFUopN2jWpqD1gK-7H

individuals can readily identify. Our findings thus deepen our un-
derstanding of machine-manipulated audio and have implications
for developing effective, human-centered strategies for spoofing
countermeasures in both the short-term and long-term.

2 BACKGROUND AND RELATEDWORK
We overview the literature related to our study, examining audio
perception, and the effect of visual loss on auditory perception. We
then briefly describe two spoofing countermeasures for detecting
bona fide and spoofed audio.

2.1 Perception of Speech in Humans
Converting speech into meaningful words is a complex process. It
begins when sound waves reach the inner ear, vibrating the organ
of Corti. This vibration prompts hair cells to convert the motion
into electrical signals, which are then sent through the auditory
nerve to the primary auditory cortex. Here, phonemes—individual
sounds that comprise words—are recognized [12]. The signals also
travel to Wernicke’s area and other brain regions, where words are
identified and their associated meanings are retrieved [45].

Various psychophysical models explore how our brain processes
sound intowords [7]. Somemodels focus on segmenting sounds into
discrete words but struggle with ambiguous word boundaries [14].
Others suggest that the brain evaluates multiple potential word
sequences to match the incoming audio [39]. Still, other research
suggests that speech processing may occur non-sequentially; future
sounds can retroactively influence our interpretation of earlier
ones [16]. Despite decades of advancements, the perception of
speech remains an active area of research.

2.2 Audio Processing Abilities of Blind
Individuals

Blind individuals interact with computers using assistive tech-
nologies, such as screen readers, which vocalize onscreen content
through machine-generated audio synthesized by Text-to-Speech
(TTS) technologies [9]. Consequently, they have extensive experi-
ence listening to both synthesized (spoofed by default) audio during
computer interaction and authentic human voices in interpersonal
communication. Moreover, many blind individuals exhibit signif-
icantly higher listening rates than sighted individuals due to the
human brain’s plasticity [8, 11, 12, 28]. This enhanced listening
ability suggests that blind individuals’ brains process auditory in-
formation differently from sighted individuals [54]. For example,
brain scans of blind individuals have revealed that they engage
the visual cortex, a major region in the human brain, for various
cognitive processes when performing tasks or exposed to stim-
uli [48, 54, 60]. This contradicts the traditional belief that the visual
cortex is exclusively reserved for processing visual stimuli (see Ko-
larik et al. [33] for a review). Because of their extensive experience
in differentiating natural human voices from synthesized audio
(generated by assistive technologies), we studied blind individuals
in great detail.

https://www.youtube.com/playlist?list=PLf_Q2-kgSq_Dr44vFUopN2jWpqD1gK-7H
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2.3 Relationship of Auditory Perception with
Vision Loss

The differences in how blind and sighted individuals perceive var-
ious acoustic properties in audio are nuanced. For instance, the
relationship between the severity of visual loss and changes in audi-
tory abilities remains unclear, both in terms of proportionality and
systematic effects. Recent research shows that more severe visual
loss correlates with increased auditory judgments of distance and
room size [33]. This finding is particularly intriguing given that our
study employs audio clips—both bona fide and spoofed—recorded
in various acoustic environments, encompassing different room
sizes, reverberation times, and distances between the sound source
and microphone (see Table 2).

Individuals with severe visual impairment perceive sound as
twice as distant and rooms as three times larger than do their
sighted counterparts [33]. As visual impairment worsens, accuracy
in estimating room size improves, but distance estimates become
less accurate for closer sounds and more exaggerated for farther
ones. Sighted individuals, in contrast, more accurately estimate
distance for closer sounds but falter for more distant ones. Accurate
judgments of closer sounds are crucial for rapid motor responses
like collision avoidance. Our work extends previous studies by
linking the perception of audio realism to the acoustic environment
in which the audio originated.

Both blind and sighted individuals understand natural speech
more easily than synthesized speech. However, blind individuals
outperform their sighted counterparts in comprehending synthe-
sized speech, likely due to their greater use of screen readers [42].
Paradoxically, when identifying automatic speech recognition (ASR)
errors in dictated text via text-to-speech (TTS) output, blind individ-
uals catch only 40% of ASR errors [27], which is fewer than the 50%
detected by sighted individuals [26]. These differences highlight
the significant impact of vision loss on speech perception. As such,
we included both sighted and blind participants to understand their
perception of authentic and spoofed audio.

2.4 Spoofing Countermeasures: Binary
Classifiers and Digital Watermarking

One approach to detect spoofed audio is to design powerful bi-
nary classifiers to predict the likelihood of a clip being bona fide
or spoofed. These classifiers recently use Deep Neural Network
(DNN)-based architecture [35, 36, 50, 58, 63–65]. They extract acous-
tic properties of the input audio by using Fourier transformations,
inverse Fourier transformations, and Cepstral analysis [10], such as
Mel Frequency Cepstral Coefficients (MFCC) [17] and Constant Q-
Cepstral Coefficients (CQCC) [55]. As these models become larger
and are trained on more data, their performance improves [10].
Community-led initiatives, such as the Automatic Speaker Verifi-
cation Spoofing and Countermeasures (ASVspoof) challenge [56],
independently assess the performance of these classifiers, pushing
the state-of-the-art in developing automatic spoof countermeasures.
However, a limitation of these approaches is potentially disregard-
ing or insufficiently using human perception in the binary classifi-
cation. This paper addresses that gap.

The second spoofing countermeasure embeds perceptual or im-
perceptible watermarks into the initial audio for later authentication

either by humans or machines [49]. Recently, watermark usage ex-
panded to identifying AI-generated content across modalities like
text, images, and audio [19, 30, 31]. Ideal watermarks withstand
manipulations including cropping, compression, or fast-forwarding.
Watermarks arise from either hand-crafted or machine-learning ap-
proaches. Hand-crafted approaches involve deterministically mod-
ifying certain frequency components, like phase or amplitude, to
embed identifiable signals without affecting perceptual quality [1].
Machine learning approaches embed imperceptible sound bites
using generative models, while separate detection models recog-
nize these embedded signals. For instance, resemble.ai leverages
psychoacoustics to insert quiet sounds in regions of lower human
sensitivity by exploiting proximity with louder sounds in both fre-
quency and time [47]. Our work investigates whether humans can
identify implicit audio cues indicative of spoofing. Such perceptual
capabilities could inform watermark designs for auditory channels.

3 STUDY 1: UNDERSTANDING HOW BLIND
INDIVIDUALS PERCEIVE BONA FIDE &
SPOOFED AUDIO

Wefirst conducted an IRB-approved studywith 12 blind participants–
6 females and 6 males–anonymized as P1 to P12. The study com-
prised two parts: In the first part, we asked participants to clas-
sify 63 audio clips as real or fake. These clips were composed of
5 TTS, 8 deep fake, 25 replayed, and 25 bona fide. In the second
part, we conducted a semi-structured interview to gain insights
into their strategies and decision-making processes. This approach
enabled us to identify the underlying factors and perceptual cues
that blind individuals utilize when tasked with differentiating bona
fide and spoofed audio. We curated audio clips from the ASVspoof
challenge datasets, a bi-annual competition aimed to advance auto-
matic spoofing countermeasures for audio. Details on participant
demographics, dataset curation, study protocol, and data analysis
follow next.

3.1 Participants and Recruitment Criteria
We submitted our study protocol and recruitment materials to the
Research Advisory Council of the National Federation of the Blind
(NFB) in Baltimore, MD, USA. Upon review and approval of our
study, they disseminated our recruitment materials (a screen reader-
accessible Google Form) to a group of blind participants.

Our recruitment criteria included that participants must 1) be na-
tive English speakers; 2) possess headphones; 3) use screen readers,
and be under the age of 50, as human hearing sensitivity begins to
decline from this age [24]. Our optional recruitment criteria sought
participants with a musical background to offer more professional
perspectives when listening to audio clips and those who listen to
TTS audio at a fast pace, indicating extensive screen reader usage.

Table 1 summarizes participant demographics and headset types.
All participants were blind – 7 were blind since birth and 2 had light
perception. They represented diverse professional backgrounds,
with 3 having musical experience. The listening rates of most par-
ticipants were over 100% faster than the default playback rate of
their screen readers, with 3 at 100% speed. P12 was a notable excep-
tion preferring a 60% slower rate. Although she did not explain this
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# Gender Age Vision Onset Occupation Screen
Reader

Listen-
ing
Rate

Music
Train-
ing

Light
Percep-
tion

Head-
phone
Used

P1 M 20-25 Blind Since birth Therapist VoiceOver 100% N Y EC, WL
P2 M 40-45 Blind Since 3 Educator NVDA 130% N N EC, W
P3 M 40-45 Blind Since 6 IT JAWS 170% N N RG, W
P4 F 26-30 Blind Since birth Student VoiceOver 170% N N EC, WL
P5 F 40-45 Blind Since birth Govt. employee JAWS 100% N N EC, W
P6 M 26-30 Blind Since 9 Service VoiceOver 125% N N EC, WL
P7 F 30-35 Blind Since birth IT VoiceOver 200% N N RG, W
P8 M 30-35 Blind Since 9 IT JAWS 170% Y N EC, W
P9 F 30-35 Blind Since 2010 Govt. employee JAWS 150% N N EC, W
P10 M 30-35 Blind Since birth Service JAWS 200% Y N EC, W
P11 F 20-25 Blind Since birth IT JAWS 100% Y Y EC, W
P12 F 30-35 Blind Since birth Student JAWS 60% N N EC, W

Table 1: Participants’ demographics. Here, EC and RG stand for echo cancellation and regular headphone type, respectively;
WL and W stand for wireless (e.g., Bluetooth-enabled) and wired headphone connection, respectively.

Settings
Settings Code a b c

Acoustic Settings for bonafide clips
Room Size (sq ft) 2-5 5-10 10-20

Reverberation Time (ms) 50-200 200-600 600-
1000

Distance from the microphone
(cm)

10-50 50-100 100-150

Recording Settings for spoofed clips
A B C

Distance from the microphone
(cm)

10-50 50-100 100-150

Audio quality perfect high low

Table 2: Acoustic environments for bona fide audio and
recording variables for spoofed audio in the PA dataset. All
bona fide clips carry a three-letter lowercase code, like aaa,
which denotes the settings used for the recording: a room size
of 2-5 sq ft (a), a reverberation time of 50-200ms (a), and a dis-
tance of 10-50 cm from the microphone (a). Spoofed clips, on
the other hand, feature a five-letter code (e.g., aaaAA), begin-
ning with three lowercase letters followed by two uppercase
ones that represent the original and manipulated acoustic
settings. For example, a spoofed clip coded as aaaAA suggests
that it originated as a bona fide clip with the code aaa and
was subsequently replayed and re-recorded at a distance of
10-50 cm (A) with ‘perfect’ audio quality (A).

slower rate, we noticed she spoke more slowly than other partici-
pants. Except for 2 participants, all used professional-grade echo-
cancellation headphones. Two-thirds of these headphones used a
wired connection while the remaining one-third used Bluetooth-
enabled wireless connection.

3.2 Study Stimuli: Curation of “Challenging”
Audio Clips

For this study, we curated “challenging” audio clips from the Au-
tomatic Speaker Verification (ASVspoof) Challenge [56]. The chal-
lenge organizers provide datasets containing thousands of bona fide
and spoofed audio clips, evaluation metrics, and baseline models for
comparing competing spoof detection model performance [37, 59].

The curation objectives. Our curation process had two key
objectives. First, we aimed to conduct the study one-on-one within
90 minutes. A longer study duration could introduce fatigue as a
potential performance-confounding variable given the sustained
perceptual focus required. This time limit allowed us to select 60-65
clips under 10 seconds in length, appropriately scoped for in-depth
analysis without overtaxing participants.

Second, since the competition datasets contain a large number
of audio clips (e.g., over 134,730) spanning numerous bona fide and
spoofed configurations (see Table 2), we required a sampling policy
to select sufficiently representative yet study-appropriate subsets.
This filtering policy enabled meaningful comparisons between hu-
man performance and binary classifiers.

The curation policy. Instead of sampling audio clips randomly
from the datasets, we first ran a baseline binary classifier, AS-
SERT [36], provided by ASVspoof Challenge, to all audio clips in
the datasets and chose those it misclassified. For instance, if the
model incorrectly identified a bona fide clip as spoofed, or vice
versa, we included it. These selected clips were then sorted by their
predicted probability scores, from highest to lowest. A high score
for a misclassified clip indicates that the model is highly confident
in its incorrect prediction, making the clip “challenging” to classify
accurately for the model. We then separated these sorted clips into
two categories: 1) False Positives, where clips were mistakenly pre-
dicted as bona fide but were actually spoofed, and 2) False Negatives,
where clips were incorrectly labeled as spoofed but were bona fide.

The curated stimuli. The ASVspoof competition provides three
datasets: Physical Access (PA), Logical Access (LA), and Deep Fake
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Figure 1: A screenshot of the Google Form used during our
study. This form is fully accessible with screen readers and
operable with keyboard shortcuts. The URL of this Form is
provided in the footnote.

(DF). The PA dataset features both bona fide and spoofed clips. Bona
fide clips reflect recordings under varied room acoustics of size,
reverberation time, and microphone distance, detailed in Table 2. In
contrast, spoofed clips originate from replaying and re-recording
bona fide samples under differing recording distances and audio
quality, also defined in Table 2. Unlike PA, the LA dataset solely
comprises spoofed clips generated via text-to-speech and voice
conversion algorithms. Similarly, the 2021 DF dataset presents gen-
erative AI-powered spoofed utterances.

We applied our curation policy to all three datasets. In addition
to the model’s difficulty in making accurate predictions, we also
considered other factors such as clips’ length, the speakers’ gender,
speech content variety, and configuration codes. Generally, we
opted for longer clips, most falling within the 5-to-7-second range,
that covered a range of topics like health, politics, and daily life.
The selection also maintained a gender balance, featuring equal
numbers of male and female voices. Furthermore, we included at
least one clip from each distinct replay configuration, as detailed in
Table 2.

Based on the above factors and our curation objectives, we se-
lected the top 25 false positive and top 25 false negative audio clips
(50 total) from the PA dataset. Given lower predicted probability
scores compared to the PA selections, we selected fewer audio clips
from the DF and LA datasets: the top 8 false positives from the DF
dataset and the top 5 false positives from the LA dataset. These 63
stimuli fulfill our earlier stated curation objectives.

3.3 Study Apparatus
Next, we embedded these 63 clips in an online Google Form as
questions, as depicted in Figure 1, presenting one question at a time
to avoid confusion. Each question included two mutually exclusive
options—Real or Fake—to indicate the clip’s authenticity. Due to
Google Forms’ inability to directly support audio, we embedded
the clips into blank video soundtracks. We ensured the Form’s
accessibility by testing it with multiple screen readers with different
web browsers onWindows and Mac computers. Readers can access
the Form from this URL2.

For counterbalancing, we enabled “shuffle question order” to
randomly assign clip order per participant. Furthermore, our use
of sub-15-second stimuli, along with auditory sensory memory de-
cay, intrinsically limited inter-stimulus interference as participants
progressed through clips.

3.4 Study Procedure and Data Analysis
We conducted the study online using Zoom teleconferencing soft-
ware. After a brief introduction and obtaining consent, we collected
participant demographics, including their history of vision impair-
ment, listening rate and listening devices, education, and employ-
ment. Each session was divided into main two parts: an online quiz,
followed by a semi-structured interview.

Part 1: an online quiz. We began Part 1 by distributing the
Google Form (shown in Figure 1) through Zoom chat or via email
based on the participants’ preferences. Participants used their per-
sonal computers and preferred screen readers while wearing head-
phones.We advised using Chrome. Once settled, participants shared
their screens. They used keyboard commands, such as Tab, Enter,
Space, and Arrow keys, to play the video clip embedded in the Form,
whose audio track contained the audio used in the study. Using
these shortcuts, they selected an answer (e.g., Real or Fake) and
navigated to subsequent questions one by one. Participants could
replay each clip; we recorded the number of replays as a measure
of difficulty. A 60-minute time limit was set to complete this quiz.

Part 2: the semi-structured interview. After form submission,
we began Part 2 with a semi-structured interview to understand
participants’ decision-making in assessing audio clip authenticity.
We asked what aspects of the audio they focused on, as well as
what factors they prioritized, and what influenced their decisions.
Moreover, we asked if there were competing factors, and if so, how
they prioritized or broke the tie.

Further, we reviewed their answers one by one without revealing
the correct ones and asked them to articulate their decision-making
processes for a clip. Additionally, we asked how confident they
were in making the decision. For clips that they either spent more
time on or replayed more frequently, we probed what were the
challenges and their resolution strategies.

We also asked participants to estimate the acoustic settings of the
audio, such as the distance from the sound source to the recording
device (e.g., close or far), room size (e.g., small, medium, or large),
duration of reverberation (e.g., short, medium, or long), and audio
quality (e.g., good, medium, bad).

2https://forms.gle/YfRtcta6zwbG1aQ47

https://forms.gle/YfRtcta6zwbG1aQ47
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The first author of this paper conducted the study. Each ses-
sion lasted approximately 90 minutes. All sessions were recorded
post-consent for subsequent analysis. Participants received a $25
Amazon gift card for their participation.

Data analysis. We manually transcribed and analyzed the data
using an iterative coding process [13]. All authors reviewed the
codebook (created in Google Sheets) during weekly research meet-
ings, identifying key concepts, categorizing them into themes and
sub-themes, and resolving any conflicts.

In the first coding cycle, we identified low-level descriptive codes
capturing dimensions like speakers’ prosody, vocal patterns, ac-
cents, mouth sounds, pacing, emotional state, audio quality, distor-
tion, artifacts, ambiance, and post-processing effects. In subsequent
cycles, conceptually related codes were consolidated into higher-
level categories reflecting core themes. Ultimately, six major themes
emerged through the iterative process of refinement and aggrega-
tion, detailed in the following sections.

For quantitative analysis, we exported the results from theGoogle
Form to a CSV file and post-processed it in Python. We program-
matically compared the participants’ Real/Fake classifications to
the ground truth labels derived from our curated stimulus datasets.

4 STUDY 1: FINDINGS
We now present our findings from Study 1, organized under six
major themes. Results on quantitative prediction accuracy are pre-
sented in Table 3 and described toward the end of this section.

4.1 Speakers’ Accent
The term accent has two distinct concepts: i) voice inflection, which
refers to the specific emphasis a speaker applies to a syllable or
word in speech through stress or pitch; ii) it relates to the distinctive
manner in which a speaker pronounces a language, often linked to
a particular nation, locality, or social class.

4.1.1 Voice Inflection. All participants attended to the speakers’
vocal inflection, intonation, fluctuations, variations in sound, and
vocal tone in the audio clips. This attribute emerged as the most
commonly mentioned (N=12), with participants focusing on the
extent of vocal fluctuations and monotonicity to discern whether
the voice belonged to a real human.

When encountering keywords in a sentence during the speech,
participants directed their attention toward emphasis, specifically
how the speakers emphasized particular words, made their voice
more assertive, or elevated their pitch. Bona fide human speakers
assign importance to certain syllables within a sentence and in-
dividual words, which they accomplish through inflection. This
inherent quality guided our participants to select “real” in their
responses.

Moreover, participants noted that changes in tone at the end
of a sentence served as a significant indicator. Screen readers like
VoiceOver or JAWS attempt to deliver the context of a sentence
clearly, resulting in less variation in vocal tone compared to actual
human speakers. Consequently, participants perceived relatively
monotonous voices as spoofed audio. P11 stated that machines
only elevate the tone at a sentence’s end when it terminates with
an exclamation (!) or a question mark (?). In contrast, humans

may occasionally interpret the sentence as a question, even in the
absence of a question mark or when comprehension is incomplete.

The speaker’s overall pitch also influenced participants’ choices.
P9 cited an instance where the voice did not align with their preex-
isting concept of a typical male or female voice. Upon hearing an
exceptionally low or high-pitched voice, P9 assumed it belonged
to a natural person with an atypical pitch, as screen readers like
VoiceOver or JAWS do not offer voices with such distinctive pitches.
However, this observation does not necessarily imply that a voice
adhering to the prototypical human voice they envision is spoofed.
Furthermore, speakers’ gender did not influence participants’ deci-
sions (N=7).

4.1.2 International Accent. Regarding the second definition of ac-
cent, the majority of participants preferred to set their screen reader
to have a North East American accent voice (N=11). Accordingly,
they are familiar with listening to accents of the north-east states
of the USA but unfamiliar with other accents, such as the accent
of the southern states of the USA or international (e.g., European
and Asian) accents. Although companies offering screen reader
services attempt to design voices with non-American accents, these
options are infrequently provided or used due to limited demand.
Therefore, when participants encountered international accents,
such as European or Asian accents, they tended to perceive those
audio clips as bona fide. This is perhaps due to their misconception
that machines cannot learn different accents easily.

“‘S’ sounds different. When she speaks ‘lists’, she
sounds like a European, you know how Spanish
speaks ‘S’. That’s why I chose real.” (P2)
“It sounds like a foreigner. I mean, non-American
accent. There is a synthesized voice with a non-
American accent but you can usually tell the
difference [between synthesized voice and real
human voice] with how the inflection is or how
it handles the accents.” (P8)

Additionally, participants interpreted unusual pronunciation as
errors made by humans. For instance, P1 posited that people read
acronyms alphabetically or made mispronunciations according to
their discretion, in contrast to the pronunciation provided by screen
readers. This finding is fascinating—it reiterates the age-old saying,
“to err is human”.

In sum, participants effectively differentiated between real hu-
man voices and synthesized voices (spoofed by default) by listening
to international accents, unfamiliar accents, and international pro-
nunciations.

4.2 Human Sound
Participants identified bona fide and spoofed audio clips by the pres-
ence or absence of unique human sounds. These include breathing,
mouth movements like lip-smacking, filler words such as hmm and
ah, and vocal fry sounds.

4.2.1 Breathing sound. For the majority of participants (N=10),
the presence of breathing sounds at the beginning of the audio
clip was a vital factor. If no breathing sounds were present, they
considered the audio to be synthetic. In the case of replayed audio
clips, breathing sounds may be difficult to detect since they are
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Figure 2: Top: Waveplot of a TTS clip. Middle: Waveplot of
a spoofed clip with a replay attack. Bottom: Waveplot of a
bona fide clip which is the original version of a human voice.

Figure 3: Top: Spectrogram of a TTS clip. Middle: Spectrogram
of a spoofed clip with a replay attack. Bottom: Spectrogram
of a bona fide clip which is the original version of a human
voice.

often too faint to be heard during replay. However, in original clips,
the presence of breathing sounds at the beginning is more likely,
which helped participants correctly identify these clips as bona
fide.

To visually demonstrate this factor, we display wave plots (Fig-
ure 2) and spectrograms (Figure 3) of three audio clips. In wave
plots, red-colored waves are percussive, which represent high-pitch
and non-tonal noises. These are used to replicate the articulation
of natural speech. Blue-colored waves are harmonics that illustrate
the intricate interaction of the vocal cords, throat, or nasal cavity
that forms the distinctive timbre of the voice.

The middle plot, representing a replayed clip, shows no signifi-
cant voice activity at the start. In contrast, the bottom plot (Figure 2),
displaying a bona fide clip, exhibits distinguishable energy move-
ment, highlighted in the green box.

4.2.2 Filler words. P7 highlighted that machines typically interpret
sentences inputted into a computer differently from the informal
language individuals utilize in speech. She further noted that filler
words, such as hmm... and ah..., are rarely incorporated in written
sentences, yet they are frequently employed by genuine human
speakers during conversations. Hence, when participants detect
filler words in audio clips, they can deduce that the voices belong
to real humans.

“I heard ‘Rrrr’. Also, vocal registers, that make the
speaker sound like very intelligent. Those matter.
Humans do that while screen readers don’t.” (P7)

Filler words usually have more air than regular words and are
frequently used during hesitation, resulting in instances where
the volume is low within the clip. Similar to breathing sounds
and mouth movements, participants mentioned that filler words
might become faint when clips are replayed multiple times and
re-recorded. This provided them with another clue to correctly
identify these clips as spoofed (e.g., clips that contain faint filler
words are likely to be spoofed).

4.3 Pausing
Participants took into account the location and duration of pauses
when determining whether an audio clip was bona fide or spoofed.
They noticed many artificial or nonsensical pauses in synthesized
voices and overlapping of words (N=11). However, P7 noted that
sometimes overlapping of words can still resemble a human voice if
the length of the pause is typical. P10 also mentioned cases where
a person’s breathing sound overlapped with a word without an
appropriate pause, which they perceived as an added breathing
effect to imitate a human voice. Overall, participants tended to
consider an audio clip as spoofed if they noticed an abnormally
short pause.

“If you breathe, you at least talk after you breathe,
but if there is no space after a breath or a raspy
kind of breathing, that is fake. Like if someone
is pretending to be another, or a person might
constantly start to talk after breathing. But I don’t
know anyone who breathes like that and who can
talk at the same time. People breathe until they
can talk.” (P10)

Moreover, P4 explained that she could recognize choppiness and
strange silence which was not expected unless the pronunciation
was mistaken. She considered it as a spoofed audio created by con-
catenating two different files to form a new sentence. For example,
the word ‘overlay’ would typically be pronounced as a single unit,
but one of the given clips enunciated it as if ‘over’ and ‘lay’ were
two separate words. This led to cases where the entire clip was
perceived as spoofed.

In the context of an authentic human voice, the participants
mentioned that the duration of pauses between words within a
sentence is inconsistent. For example, the pause following specific
punctuation marks, such as commas, semicolons, or colons, gener-
ally exceeds that of the pause after a word. Furthermore, humans,
unlike text-to-speech machines, regulate speech speed and pause
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in accordance with a unit of meaning. While machines interpret
spaces literally, humans read or construct spaces based on the unit
of meaning within a sentence to facilitate comprehension. There-
fore, the pattern of human pauses appears irregular in comparison
to synthesized voices, enabling listeners to discern a natural flow
or rhythm in the audio when reading scripts.

The noted differences are discernible in our previous visualiza-
tion, Figure 2 and Figure 3. The most prominent distinction between
TTS and replayed audio lies in the presence or absence of hesitation
at sentence commencement. TTS starts without delay, evidenced
by the absence of gaps between the clip’s start and the first word
in both figures. Conversely, bona fide and replayed human voices
exhibit silence in the beginning.

4.4 Perceived Emotion
The majority of participants (N=8) mentioned that they were able
to perceive emotions from the audio clips. Although the types of
emotions varied, they commonly agreed that various emotions,
such as sadness, matter-of-fact tones, boredom, and excitement,
were evident in actual human voices. Furthermore, participants
identified similar emotions when listening to the same specific
audio clips.

“I felt her sadness in her tone, some kind of emo-
tion. Usually, I can’t feel any emotion from syn-
thesized voice.” (P2)

Participants reported perceiving various emotions, such as hap-
piness and sadness, and attempts to conceal emotions. Many com-
mented that the speaker seemed bored, speculating that the indi-
viduals recording the sentences might have been fatigued by the
repetitive nature of the task. However, participants were still able
to discern various emotions beyond boredom that machines could
not replicate, leading them to correctly classify these clips as real.

However, when listening to spoofed audio clips, participants
reported only three emotions—no emotion, boredom, and anger—all
of whichwere negative (N=6). Specifically, they struggled to identify
the type of emotion conveyed in spoofed audio clips. P9 mentioned
that replayed (spoofed) audio clips sounded as though there were
numerous layers between the recorder and the speaker, making it
challenging to detect any emotions. TTS voices did convey some
emotions, but they were primarily negative. Three participants
reported feeling anger from machine-generated voices due to the
lack of natural reverberation and monotonous tone. In all instances
where emotions influenced decision-making, participants made
accurate judgments.

“The one that lady was talking about the meeting
[Real], I was able to feel emotion from it. I felt sad
from the way she is speaking and the content as
well. But definitely from the way she is speaking.
That is how I try to tell people’s emotions by the
tone of their voice. The person who was talking
about the meeting [Real] had a tighter voice to
her voice. From the synthesized voice [Fake], no
emotion at all.” (P12)

The audio content also influenced the perception of emotions.
When P12 heard clips discussing societal issues with accurate pro-
nunciation, she associated the voice with a news report. If the

topic was relevant to the news, it gave her the impression that the
voice was confident and trustworthy. However, in this case, the
feeling was not attributed to the audio aspect but rather the content.
This suggests that content can also be associated with emotions.
Thus, content analysis could be combined with emotion detection
models to determine whether a voice is genuinely human or an
impersonation.

4.5 Audio Quality, Digital Artifacts, and Echo
Some distinct sounds are exclusively present in spoofed audio
recordings. Participants described these as “mechanical sounds”,
“digitized sounds”, “metallic sounds”, “grainy sounds”, and “fish
tank sounds”. They considered these sounds to be defining char-
acteristics of screen reader voices or digital artifacts introduced
during spoofing. Consequently, when voices exhibited these types
of artifacts, participants correctly identified them as spoofed. In
Figure 2, red-colored percussive waves, which indicate clicks, pops,
and other types of noise, are more dominant in TTS and replayed
clips compared to the bona fide ones.

“It is a screen reader. I think I’ve heard this voice
a lot. It sounds really robotic and familiar.” (P6)

“It is obviously a synthesized voice. I can’t hear
anything that sounds like a human. It has really
robotic, mechanical voice. It has no emotion at
all. No breathing, no echo, no anything, not even
white background noise. It is just like text-to-
speech, which I used to listen.” (P11)

Regarding sound quality, participants (N=9) observed that the
presence of echo influenced their decision-making. The absence of
echo led them to perceive the audio as synthesized, as they believed
this to be a common characteristic of synthesized voices. Even if
the voice itself sounded human, the lack of echo led participants to
think that the audio had been manipulated to remove background
noise.

Additionally, highly static audio with strong reverberation was
also perceived as manipulated, but in this case, to add background
noise. On the other hand, excessive echo led participants to believe
that the audio had been replayed and re-recorded multiple times,
causing the quality to deteriorate. In contrast, if there was an ap-
propriate level of reverberation, they regarded it as natural white
noise and considered the audio to be bona fide. According to P4:

“Replayed audio clips sound like they are in the
fish tank or the sound comes from the drive-
through kiosk machine. It means these sounds
give me the impression that there are several lay-
ers on the voice, but this is different from the
original clips that are recorded from a long dis-
tance. Quality is so bad.”

Similar to emotion, participants perceive sound quality in rela-
tion to sentence content. They tend to perceive a voice as neat and
as originating from a real conversation when the sentence deals
with everyday topics or familiar subjects, and they can easily un-
derstand it due to its high-quality sound. However, if the topic is
too complex or the sentence sounds disorganized, participants may
believe the sound quality is low or that the sentence was recorded
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by a machine rather than spoken by a real person. Thus, it is chal-
lenging to prevent personal interests, biases, or stereotypes about
everyday conversations from influencing individuals’ decisions.

4.6 Analysis of Predicted Accuracy
The overall prediction accuracy for blind participants was 57% (see
Table 3). This low accuracy suggests that, in general, blind partici-
pants struggled to correctly determine the authenticity of an audio
clip. Upon itemized analysis, we found that blind participants were
highly accurate (accuracy: over 90%) in detecting text-to-speech
(TTS) audio. Their greater use of screen readers and TTS audio may
have contributed to this performance. Apart from TTS, blind par-
ticipants were most accurate in detecting bona fide clips (accuracy:
64%), much higher than recognizing deep fake audio (accuracy:
58%) or replayed (accuracy: 43%). Finally, we did not observe any
effect of headphone types (e.g., echo-cancellation or regular) or
headphone connections (e.g., wireless or wired).

We emphasize that the overall accuracy of 57% was still signifi-
cantly higher than the deep-neural network-based baseline binary
classifier, ASSERT [36]. Recall that the audio clips used in the study
were “challenging” for the baseline classifier (Section 3.2), which
misclassified them all with high confidence, yielding an accuracy of
0%. Therefore, we conclude that human traits in the audio, as well as
the context of the audio, are instrumental for better prediction. Put
differently, machine learning models can still benefit from human
judgments in classifying challenging instances. We elaborate more
on this possibility in the Discussion section.

4.6.1 TTS as the Ground Truth for Spoofed Audio. A deeper analy-
sis reveals a key insight: throughout the study, blind participants
compared an audio clip they had just listened to with their familiar
TTS speech, mentally extracting the human traits and expressed
emotions in the audio (if any), assuming TTS as the ground truth
for spoofed audio that is devoid of any human traits or emotion.
This explains their high accuracy (over 90%) in detecting TTS.

A side effect of this assumption was that if the audio contained a
natural human voice during its creation, as in the audio clips in PA
datasets, but was then spoofed by replaying or re-recording it in var-
ious acoustic settings, participants were biased towards accepting
it as bona fide. They placed less emphasis on the presence of record-
ing artifacts in the audio. This accounts for the lowest accuracy
(43%) in detecting replayed clips, making it the most challenging
spoofing type for blind individuals to detect.

4.6.2 High-Frequency Vocal Sound in Deep Fake Speech. Three mu-
sically trained participants (P8, P10, and P11) noticed the presence
of certain high-frequency speech elements, which differed from
TTS or natural human speech. Surprisingly, their observation was
consistent with prior work on neural-rendered audio — the presence
of higher frequencies, particularly in vocals, is a common limita-
tion in many deep fake audio synthesis models (e.g., MelGAN [34];
see Frank et al. [21] for additional details). Other participants also
detected something unusual about the deep fake audio but were
less articulate. Eventually, many were swayed by the occasional
presence of human-like traits, such as vocal inflection, intonation,
and fluctuations. As deep fake algorithms continue to evolve, our
findings suggest that blind participants are likely to categorize them

as bona fide. This underscores the importance of audio watermark-
ing for AI-generated audio. We delve further into this issue in the
Discussion section.

5 STUDY 2: A SURVEY WITH SIGHTED AND
BLIND INDIVIDUALS

Building on the insights from Study 1 regarding the decision-making
process of blind individuals, we aimed to determine whether sighted
individuals employ the same process and, if not, how their decision-
making diverges (RQ2).

To investigate this, we conducted an IRB-approved online survey.
We more than doubled the number of blind participants (from 12 to
30) and included an equal number of sighted participants in Study
2. Additionally, we increased the total number of clips from 63 to
96 to enhance statistical power. The clips consisted of 8 TTS audio
clips, 8 deep fake (DF) audio clips, 40 replayed audio clips, and 40
bona fide clips. Following a method similar to Study 1, detailed in
Section 3.2, we integrated these clips into a quiz-like Google Form,
similar to Figure 1. Among nine potential combinations of replayed
audio, we included four in the study because those samples were
challenging to distinguish, having higher false positive predicted
probability scores from the binary classifier.

At the end of our Google Form, we incorporated a textbox where
participants could describe their decision-making process. The label
prompted participants to reflect on differing configurations and ori-
gins of an audio clip, providing examples like the distance between
the microphone and the sound source, room sizes, replay settings,
synthesis methods (TTS and deep fake), and how these variations
influenced their decisions.

We distributed the URL of this Form to online forums for blind
and low-vision users (e.g., nvda@nvda.groups.io and program-
l@freelists.org). To enlist sighted participants, we shared the URL
via university mailing lists. Participation was anonymous and vol-
untary, and we offered no financial incentives. Unlike in Study 1, we
had no direct interaction with the participants in Study 2. Beyond
individuals’ responses to the 96 audio clips and the free-form text
response at the end of the form, we collected additional open-ended
feedback through emails from some participants.

Data Analysis. We analyzed the responses to audio clips based
on their accuracy scores (high true positive, high false positive, high
false negative) and the predominant group with correct answers
(sighted, blind, or an equal split). Additionally, we explored common
features in audio snippets that were either easily identifiable or
challenging for both sighted and blind individuals.

All participants provided free-text responses of varying lengths.
For text analysis, we utilized the existing theme codebook developed
in Study 1. Through iterative passes, we tagged themes already
captured in the codebook while noting newly emergent ones as
well. One such new theme highlighted how sighted respondents
envisioned speakers’ facial movements while clips played. We now
present our findings in the next section.
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Audio Category
Study 1 Study 2

Participants: 12 Blind Participants: 30 Blind 30 Sighted
Number
of clips

Mean
Accuracy (SD)

Number
of clips

Mean
Accuracy (SD)

Mean
Accuracy (SD)

Bona Fide 25 0.64 (0.16) 40 0.67 (0.16) 0.65 (0.15)

TTS 5 0.97 (0.06) 8 0.91 (0.05)* 0.84 (0.08)
Deep Fake 8 0.58 (0.12) 8 0.58 (0.12) 0.71 (0.17)*
Replayed 25 0.43 (0.17) 40 0.44 (0.18) 0.46 (0.15)
Overall 63 0.57 (0.22) 96 0.59 (0.21) 0.59 (0.29)

Table 3: The average accuracy and standard deviation (SD) for identifying bona fide and spoofed audio types-—including TTS,
Deep Fake, and Replayed -— in Study 1 (Section 3) and Study 2 (Section 5). In Study 2, numbers marked with an asterisk (*)
indicate statistically significant differences in accuracy between blind and sighted participants (by Mann-Whitney U tests).

5.1 Findings: Comparing Decision Factors of
Sighted and Blind Individuals (RQ2)

Our survey results, summarized on the right side of Table 3, confirm
the trends identified in Study 1. Sighted individuals also attended
to similar human traits in audio, underscoring the validity and
significance of our earlier findings. However, we observed a crucial
difference in the mental models that sighted and blind participants
employ for decision-making, detailed below.

5.1.1 Differences in Mental Models between Sighted and Blind Par-
ticipants. Study 1 revealed blind participants typically compare
incoming audio to text-to-speech (TTS), using TTS as a spoofed
audio baseline. For sighted participants, our text analysis revealed
that they envision an abstract human face, like a talking head, as
well as its facial expressions that would likely accompany speech
production. One sighted participant wrote the following:

“While listening, I can imagine a girl of a specific
age, and I begin to draw a sense of connection to
someone in a similar age group and gender.”

Another sighted participant wrote: “How could she make that
sound? She must have dropped her jaw and twisted her tongue.”

One way to explain this phenomenon is that sighted individuals
engage with their communication partners visually, often paying
close attention to each other’s facial expressions and mouth move-
ments. Thus, when listening to a speech clip, they try to visual-
ize the likely mouth movements and facial expressions involved
in the speech. If these imagined mouth movements and/or facial
expressions seem unrealistic, they tend to consider the audio as
deep-faked.

In sum, blind participants mentally assess whether the audio
exhibits human traits that are absent in TTS, while sighted partici-
pants evaluate whether the speech could realistically be produced
by an abstract talking head. This variance in mental models is key
to explaining the performance differences between sighted and
blind participants.

5.1.2 Analysis of Predicted Accuracy. For each audio clip, we col-
lected 60 responses—30 from blind individuals and 30 from sighted
ones—resulting in a total of 5,760 data points (60 × 96). To assess

statistical significance, we used the Mann-Whitney U test, a non-
parametric method, given that our data were not normally dis-
tributed.

Overall, the mean accuracy scores for blind and sighted partic-
ipants were almost identical – 59% (SD: 21%) and 59% (SD: 29%),
respectively, as shown in Table 3. The mean accuracy scores differed
only in the third decimal place.

Our itemized analysis indicated that sighted participants were
more accurate (71%) in detecting deep fake audio than their blind
counterparts (58%), a statistically significant difference. Conversely,
blind participants significantly outperformed sighted ones in recog-
nizing TTS, with scores of 91% versus 84%. These performance gaps
can be attributed to the differing mental models outlined earlier.

In recognizing bona fide audio, blind participants performed
marginally better than sighted participants (67% vs. 65%), although
the difference was not statistically significant. The performance of
both groups was the weakest in recognizing replayed audio, with
scores of 44% and 46%, making it the most challenging category
of spoofed audio to detect. Note that this is consistent with our
findings in Study 1.

5.1.3 Analysis of Replayed Audio. Since replayed audio appeared as
the most challenging category, we performed an itemized analysis
of these clips. However, we only report the dominant trends in
the data, as our data points are insufficient compared to the large
number (243 = 27 × 9) of possible replay configurations.

We found the distance from the microphone during recordings
was a key contributor to this challenge. Blind individuals exhib-
ited higher accuracy when the audio was replayed from a longer
distance and the perceived sound distance was distant. When au-
dio was replayed at a closer range, implying that the sound was
perceived to be near, sighted individuals demonstrated greater accu-
racy. This is surprisingly consistent with prior work that reported
that blind individuals’ judgment improves with sound from longer
distances, while sighted individuals discern sounds more accurately
when they originate from closer proximity [33]. Finally, regarding
re-recording in smaller room sizes, both blind and sighted individu-
als appeared to be perplexed, recording the lowest accuracy scores
for both groups.
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Human Trait Description Likely
Decision

Accent (Inflection) Obvious inflection throughout the clip Bona fide
Accent
(International) European or Asian English accent Bona fide

Audio quality Too Good: All words are clearly understandable, with no
ambiance noise, background sound, reverberation, or echo Spoofed

Medium: Noisy but understandable Bona fide
Bad: Too much noise and words are not understandable Spoofed
Metallic sound present anywhere in the audio Spoofed

Breathing Breathing present at the beginning Bona fide
Breathing present at the end Bona fide
Breathing anywhere in the audio Bona fide

Echo Echo present at the end Spoofed
Emotion (Negative) Evoked negative emotion Spoofed
Emotion (Neutral) Evoked no emotion Spoofed
Emotion (Positive) Evoked positive emotion Bona fide
Filler words Noticeable filler words present at least once Bona fide
Human Error Mispronunciation present at least once Bona fide
Pausing Pausing present at the beginning Bona fide

Pausing anywhere in the audio Bona fide
Reverberation Reverberation present anywhere in the audio Bona fide

Reverberation present at the end Spoofed
Table 4: A comprehensive list of the human traits that may have affected the choices of blind participants in our study.

6 DISCUSSION AND DESIGN IMPLICATIONS
6.1 Summary of Findings and Implications
Blind individuals attend to specific human traits in the audio, which
we summarized in Table 4, along with how these could influence
their decisions. Further, blind individuals were highly accurate in
detecting TTS audio, with accuracy exceeding 90%. Moreover, TTS
serves as their mental model for evaluating audio authenticity. Fi-
nally, the inclusion of human-like traits in spoofed audio types,
such as replayed or deep fake, complicates their ability to correctly
identify authentic audio. Additionally, our second study doubled the
participant pool including both blind and sighted individuals, col-
lecting more data points. It further generalized or confirmed trends
observed in the first study for both blind and sighted individuals.
For example, sighted participants, like their blind counterparts, fo-
cus on human traits in audio to determine authenticity. However,
the mental model of sighted individuals differs from blind individu-
als – sighted individuals rely more on visualized facial expressions
during speech as their decision-making baseline. Because of this
difference, blind participants outperformed sighted ones in detect-
ing TTS audio (91% vs. 84%) but were less adept at recognizing
deep fake audio (58% vs. 71%). Finally, both groups struggled to
accurately identify replayed audio. When the audio was replayed
at a closer range, the sighted group demonstrated greater accuracy.
In contrast, blind individuals exhibited higher accuracy when the
audio was replayed from a longer distance. The findings have major
implications which we discuss next.

6.2 Personal and Societal Implications
First, when an audio clip features human traits, even if it is gener-
ated by an AI, blind individuals are likely to perceive it as authentic.

This tendency puts blind individuals at risk across voice interfaces
like telebanking and bill pay as convincing AI personas proliferate.

Second, the judicious application of realistic deep fake voices
in screen readers presents promise – substituting the traditional
robotic TTS voices with human-like ones can improve the user
experience. Particularly, it can make the interaction more affective,
personalized, and enjoyable than the status quo. A recent study [51]
supports this hypothesis – people like a voice assistant that sounds
more like them than one with a less similar voice.

Third, the audiovisual correspondence is strong among sighted
individuals [38], providing them with more cues to detect AI-gen-
erated audio.

Fourth, the mere fact that audio can be spoofed negatively affects
both blind and sighted people’s judgment. As they scrutinize the
authenticity of the audio more, they become more prone to errors,
with accuracy in determining bona fide audio under 65%. This
suggests that the task is psychologically taxing and burdensome.
This implies that in the future, tasks should not require users to vet
the authenticity of the other communication entity based on their
speech. Put differently, security measures should be decoupled from
audio-based communication; audio can serve other collaborative
aims but must not remain tightly coupled to identity verification.

Finally, both blind and sighted individuals apply social norms
and judgments in determining the authenticity of the audio, as
if conversing with another human in social settings, attending to
physiological and emotional states. Since synthetic audio is likely
to exhibit more human traits, the binary question of real versus
fake becomes less relevant. Instead, research and design should
focus on developing better disclosure mechanisms. For example,
is it sufficient to simply disclose that the other party is an AI? Does
it affect the communication quality? How to build new paradigms
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embracing both human and synthetic interlocutors transparently?
We leave these inquiries for future research.

6.3 Implications in Human Traits Detection
Historically, research on human speech and voice has focused on
inferring speakers’ personalities [5]. While this line of inquiry de-
termined that specific voices could evoke stereotyped personality
judgments, it also revealed that these judgments might not corre-
spond with more direct or valid personality evaluations [20]. Recent
studies have shifted their focus from real humans to virtual agents,
such as online bots and social spambots, aiming to identify various
human traits (e.g., age, gender, personality types, sentiment in gen-
erated text, expressed emotions) and specific stereotypes associated
with these agents [23]. Their findings suggest that social spambots
display limited gender, age, and emotional variation but exhibit
higher levels of positive sentiment and usage of neurotic language
compared to real humans.

Our work aligns with this direction, as we discovered that both
bona fide and spoofed audio could exhibit certain human traits and
evoke specific stereotypes among blind individuals. For example,
spoofed audio predominantly evokes negative emotions, similar to
social spambots that mainly use neurotic language.

While detecting emotions in the text is well-researched, isolating
human traits like breathing, pausing, and affect from audio remains
less explored. One of our findings is that human judgment still out-
performs current binary classifiers for detecting audio authenticity.
This implies that segmenting human traits presents an opportunity
to construct specialized classifiers, with each focused on identify-
ing a single trait. By combining these individual classifiers into an
ensemble architecture, more robust, explainable, and perceptually
grounded defenses against spoofing attacks may emerge. Table 4
can serve as guidelines for constituting such classifiers.

6.4 Implications in Human-AI Collaboration
When humans and AI possess identical information, AI tends to out-
perform human decision-making. However, our findings reveal that
in detecting the authenticity of audio, humans possess insights that
AI models lack. In such scenarios, a combined approach involving
both humans and AI may yield superior performance [15].

One less-explored avenue for enhancing effective human-AI
interaction is the use of AI UncertaintyQuantification in predictions.
For instance, if a classifier reports its level of uncertainty, such as
“the audio is spoofed with 80% certainty” or “the audio is spoofed with
50% certainty”, it will likely influence the user of this algorithm in
their decision-making [4].

Building on this notion of uncertainty, we propose a deferral
learning architecture [40, 46] – if the model’s uncertainty falls below
a certain threshold, it defers the decision-making to humans. Prior
work has shown that models that learn to defer outperform either
humans or AI acting alone [46, 61].

The key challenge to developing this architecture is that it will
require a substantial volume of expert judgments to pinpoint in-
stances that should be deferred to human experts. Future employ-
ment opportunities for stakeholders who are interested in serving as
experts may become available and present an opportunity for blind
people who are underemployed [25]. Through the implementation

of an online interface, these individuals can contribute efficiently
and consistently as crowdworkers, enhancing both employment
opportunities for blind people and AI security.

6.5 Implications in Digital Watermarking
Generating an imperceptible watermark is an active area of re-
search, dominated by big technology companies [2, 3, 47]. However,
our findings implicate that watermarks need to be perceptible to
humans, easy to recognize, and should be a part of the disclosure
mechanism. This way, it can promote human agency and control
over AI models that encode or decode watermarks imperceptibly.

As such, we encourage researchers to explore human-centered
“perceptible” watermarks. A possible idea is to replace a small por-
tion of deep fake audio with a TTS-synthesized speech that blind
individuals can instantly recognize. Another idea is to remove
breathing sounds temporarily, which both blind and sighted in-
dividuals can immediately notice, which will inform them that
audio is machine-generated. We leave this work for the future.

6.6 Limitations
Our work has several limitations. First, the imbalanced number of
samples across spoofing categories is a limitation, as certain cate-
gories (e.g., replayed) were more prevalent than others (e.g., TTS
or deepfake) due to our design choice of selecting challenging clips.
Second, within the replayed category, some configurations featured
only a few samples (e.g., 1 or 3 clips) because of the large number
of possible configurations for how an audio clip can be replayed.
Finally, the number of samples in the text-to-speech and deepfake
categories was small. We addressed these limitations by emphasiz-
ing the dominant trends in the results and reporting descriptive
statistics. We also stress that our chosen samples were challenging
and therefore more informative than arbitrarily chosen samples. In
the future, we plan to conduct a large-scale study of deepfake and
text-to-speech categories in the wild, as these types of audio clips
are becoming more prevalent due to the ubiquity of AI technology.

7 CONCLUSION
We explored the ability of blind and sighted individuals to dif-
ferentiate bona fide and spoofed audio files and investigated the
factors that contribute to their decision-making process. To do so,
we first conducted interviews with 12 blind participants, analyzing
63 challenging audio clips. This unveiled specific human traits on
which they focus when determining the authenticity of an audio
clip. These heuristic traits include the speaker’s accents, vocal in-
flections, the presence of breathing sounds, lip movement sounds,
irregular pausing patterns, audio quality, and perceived emotions.
Afterward, we conducted a survey with 30 participants from both
the blind and sighted groups, respectively. This strengthened the re-
sults from the interviews, showing that people rely on human traits
for making decisions. However, the ways they used those traits dif-
fered: blind people compared traits from screen readers to the given
audio samples, while sighted people compared real human voices
to the given audio samples. Additionally, audio recording settings
such as room size and recording distance impacted the results. Fur-
thermore, our findings provide insights for enhancing AI’s spoofing
detection capabilities by emphasizing the role of human auditory
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understanding in distinguishing between bona fide and spoofed
audio. As AI-generated audio becomes increasingly sophisticated,
we suggest that the focus should shift from origin determination to
risk mitigation, possibly through perceptible watermarks.
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