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Abstract
Computer users commonly use applications designed for
different operating systems (OSes). For instance, a Mac user
may access a cloud-based Windows remote desktop to run
an application required for her job. Current remote access
protocols do not work well with screen readers, creating a
disproportionate burden for users with visual impairments.
These users’ productivity depends on features of a specific
screen reader, and readers are locked-in to a specific OS. The
only current option is to run a different screen reader on each
platform, which harms productivity.

This paper describes a framework, called Sinter, that
efficiently and seamlessly supports remote, cross-platform
screen reading, without modifying the application or the
screen reader. Sinter addresses these problems with a platform-
independent intermediate representation (IR) of a remote
application’s user interface (UI). The Sinter IR encapsulates
platform-specific accessibility code on the remote system,
facilitates development of additional accessibility features,
and is simple enough to be reconstructed and read on any
client platform. In the example above, Sinter allows a Mac-
only reader to read remote Windows applications.

Sinter supports low-bandwidth, remote access to a wide
range of applications, including Microsoft Word and Apple
Mail, with both Windows and OS X clients and servers, as
well as a web browser client. Sinter’s IR-level programming
model facilitates development of accessibility features and
other enhancements, transparently to the remote application
and reader. Sinter’s latency is low enough for practical use,
even over a relatively slow network connection.

1. Introduction
Computer users with visual impairments typically rely on
special-purpose assistive technologies (ATs) to adapt an
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interactive graphical user interface (GUI), designed for a
sighted user, to other senses—primarily hearing. For these
users, the assistive technology of choice is a screen reader,
such as NVDA [43], JAWS [26], SuperNova [24], Window-
Eyes [31], or VoiceOver [16]. Screen readers serially narrate
the textual content of the screen using a text-to-speech en-
gine. Screen readers also include reader-specific productiv-
ity enhancements that improve the efficiency of navigation,
such as touch and keyboard shortcuts, or reorganizing a two-
dimensional content layout for more efficient audio naviga-
tion. People with low vision may also use magnifiers, such
as MAGic [27] and ZoomText [10], which enlarge a small
portion of the screen in addition to reading GUI contents.

For a sense of the size of this population, the World
Health Organization reports there are 285 million people
with vision impairments worldwide—39 million blind and
246 million with low vision [53]. In the U.S. alone, there are
over 21 million Americans suffering from vision loss, and
approximately 1.3 million Americans are considered legally
blind [11]. These numbers are expected to grow as baby
boomers develop vision impairments associated with age-
related diseases, such as diabetes and macular degeneration.

This population relies on screen readers and other assis-
tive technologies to use computers, but these technologies
are locked into a single operating system (OS) platform—
creating undue obstacles for user with visual impairments to
leverage applications on multiple OSes. Simply put, current
screen readers are neither interchangeable nor portable. A
user’s productivity hinges on features provided by a specific
screen reader, and that screen reader only works on one OS.
This lack of interoperability in screen readers stems from
how accessibility interfaces are designed in modern OSes.
The OS interfaces (APIs) by which screen readers get infor-
mation seem easy for the OS developer to add to a working
system, but, from the screen reader’s perspective, are cum-
bersome, idiosyncratic, and, in our experience, even buggy.
Screen readers are locked-in to specific platforms both be-
cause of platform-specific hacks to work around API prob-
lems, as well as differences in the underlying APIs. Exam-
ples of these Accessibility APIS include Microsoft’s MSAA
& UI Automation [37, 39], Apple’s NSAccessibility [15], and
GNOME’s ATK & AT-SPI [29]. In total, an attempt to port a
screen reader from one OS (say, Windows) to another (say,
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Figure 1. Default GUI and Accessibility stack (left panel),
and illustration of Sinter (right panel). Remote Desktop Pro-
tocol (RDP) and other remote access technologies relay the
hardware pixel buffer, whereas Sinter adds a layer of indi-
rection at the semantic layer between the remote window
manager and creates a proxy application which can be read
by a local screen reader. We illustrate a Mac client reading a
remote Windows system as an example, but other combina-
tions are supported.

Mac OS X) would involve rewriting nearly all of the tens
of thousands of lines of code that interact with these OS in-
terfaces. OS lock-in was acceptable 20 years ago, when a
typical user had a single, preferred desktop OS, but mod-
ern users increasingly interact with multiple OSes, such as a
Mac user developing a project for a Linux server inside of
a virtual machine, or a physician using an iPad to access a
sensitive medical records application running on a Windows
remote desktop server.

Moreover, remote desktop protocols and virtualization
techniques will not solve this problem, despite serving
sighted users well. A typical approach to capturing the dis-
play of a virtual or remote machine is to emulate a graphics
card frame buffer, which we call hardware virtualization and
illustrate in Figure 1. The pixel values are collected from the
frame buffer of the remote or virtual system, and redrawn
as a simple bitmap on the local screen. Other GUI elements,
such as the mouse, keyboard, and audio, are similarly cap-
tured and relayed at the hardware abstraction level. When a
desktop screen reader encounters a virtual machine window
or remote desktop client, the window is treated as a literal
black box—the user must install a different screen reader
inside the VM and relay audio output.

Requiring multiple screen readers creates several prob-
lems for disabled users. First, different OSes also present dif-
ferent logical navigation models of the user interface, illus-
trated on OS X and Windows in Figure 2. Users typically ex-
plore the screen to create a two-dimensional mental map of
the elements, and changing this model is highly disorienting.
Second, visually impaired users rely on AT-specific features,
such as shortcuts, to quickly navigate a two-dimensional
space designed for sighted users. Thus, switching screen
readers is disruptive to users—comparable to the loss of

Figure 2. Screen reader navigation models in a typical Win-
dows reader (left), and an OS X reader (right), indicated by
arrows. Windows readers, like JAWS, use a “flat” navigation,
which cycles through elements in a circularly-linked list. In
contrast, VoiceOver on OS X navigates “hierarchically,” ef-
fectively traversing a logical tree structure of GUI widgets.

muscle memory when a user switches from a QWERTY to a
Dvorak keyboard layout. Third, high-quality screen readers
are often expensive (JAWS retails for around $1,000 [26]),
and limited to single-seat licenses; each remote or virtual
system requires another license. Finally, blind “power users”
can listen to the screen contents at 5× speed or higher [25];
relaying audio from a remote application can introduce un-
acceptable latency. These cost and usability issues on remote
and virtual desktops create a significant obstacle for blind
users.

This paper observes that, for screen readers, the point
with the most similarity across platforms is the semantics
of application GUIs—applications on every OS consist of
similar widgets such as buttons, drop-down menus, and text
fields.

This paper describes Sinter, illustrated in Figure 1, a
framework for an unmodified screen reader on a local or host
system to transparently read unmodified applications run-
ning on a remote or virtual system. Sinter scrapes snapshots
of an application’s GUI from a specific OS. Rather than us-
ing screen pixels, which lose semantic information essential
for screen reading, Sinter collects a generic, least-common-
denominator intermediate representation (IR) of high-level
widgets, such as text boxes and buttons, potentially trans-
forms this IR, and ultimately renders the snapshot of the ap-
plication GUI using native widgets in a proxy client on a
different platform. The screen reader on the client system
can read this proxy as if the remote application were run-
ning locally. The engineering complexity of this approach
is minimized, as one needs to write a proxy application for
the Sinter IR only once per platform. Although we focus on
cross-platform reading as a challenge application, Sinter can
also be used for reading remote applications on the same OS
(e.g., Windows-to-Windows reading).

This paper also describes an IR-level programming model,
which allows users to write accessibility enhancements for



applications, without modifying the application or screen
reader. For instance, we demonstrate a most-frequently-used
shortcut bar for navigating Microsoft Office ribbons, as well
as retooling the Mac Finder interface to present a more
familiar navigation experience for a blind Windows user.
We believe that IR programming can also be applied for
non-accessibility purposes, such as streamlining workflows
across multiple GUI-based applications, but we leave this
for future work.

This paper makes the following contributions:
• The design and implementation of the Sinter framework

and IR, which makes screen readers interoperable with
applications running on other OSes.

• Transformations—a simple, powerful abstraction for im-
plementing accessibility enhancements transparently to
the application and screen reader.

• Proof-of-concept client and remote implementations for
Windows, OS X, and a web browser client. The browser
client works with an in-browser reader [46], allowing
non-visual, remote access from any system.

• A thorough evaluation of the Sinter prototype using a
wide range of rich, desktop applications, including Mi-
crosoft Word and Apple Mail. We compare Sinter to re-
laying audio over remote desktop protocol, and find that
the user latency is significantly lower and the bandwidth
requirements are an order of magnitude lower. Sinter
offers comparable latency and bandwidth to NVDARe-
mote [6], but offers wider functionality, including reading
across different OSes.

2. Background
This section reviews current OS accessibility and UI au-
tomation tools, and outlines the opportunities to encapsulate
idiosyncrasies behind a common model, decoupling screen
readers from the OS they were initially written for.

Modern OS windowing systems expose a set of accessi-
bility APIs designed to facilitate assistive technologies (ATs)
as well as GUI application testing and automation. These
APIs expose a high-level model of the components of an
application—similar in many respects to an HTML docu-
ment object model (DOM) tree [51]. The objects in this tree
represent all UI elements, such as text boxes and buttons. A
client of an accessibility API generally does the following
tasks:
• Walks the tree, extracting text or other information, and

then rendering this for user, say as audio or in larger print.
• Monitors UI objects for updates.
• Simulates user interaction.

Object access. A client connects to the window manager
or an application to obtain accessible objects, which ex-
pose methods to retrieve information about the UI elements
in another program, via an IPC system such as Windows
COM [41] or Linux D-Bus [45]. Most OSes define a generic
abstract class for accessible objects; specific object types

such as buttons, text, or menus can expose additional acces-
sor methods or attributes. The degree of uniformity in acces-
sor APIs across UI object types varies by platform.

When an application’s user interface is composed only of
standard UI elements provided by the OS, such as only us-
ing standard user32 elements on Windows, the application
does not need to do anything to be accessible. If an appli-
cation includes customized UI elements, it needs to imple-
ment certain hooks in order to be accessible or automatable.
The same is true for language runtimes with UI components,
such as Java Swing. The language runtime must implement a
bridge that maps language-specific abstractions onto an ac-
cessible UI object type, such as a button or drop-down menu.

Monitoring updates and filtering. Most OSes export a na-
tive notification mechanism, such as Windows Events, to up-
date the client about changes to UI elements, such as the con-
tents of a text box changing after the user presses a button.
As we discovered, this mechanism can generate considerable
overheads, and, in practice, this mechanism breaks encapsu-
lation of internal housekeeping, such as garbage collecting
occluded elements (§6). Sinter develops techniques to miti-
gate the shortcomings of native accessibility APIs.

Simulating user interaction. OSes also allow ATs to sim-
ulate actions such as a mouse click or keystroke. This is
primarily intended to facilitate navigation by converting a
shortcut key sequence to a series of cumbersome, visual nav-
igation actions, such as walking a multi-layered drop-down
menu. The underlying mechanism is roughly equivalent to
injecting a hardware event.

Similarities across platforms. This work observes that, at
a sufficiently high level, the models exported by each acces-
sibility API are similar enough that it is tractable to trans-
late one model into another. A significant contributor to this
has been IBM’s efforts to simply standardize accessibility
APIs across platforms; the current standard is called iAc-
cessible2 [35]. This effort demonstrates laudable leadership,
but concerns such as backward-compatibility have caused
each platform to retain significantly differing APIs. To our
knowledge, no prior work has created a cross-OS accessibil-
ity bridge. The iAccessible2 effort has, however, brought the
various systems close enough to make Sinter tractable.

3. Sinter Overview
Sinter consists of three major components, illustrated in
Figure 1. On the remote or virtual system, a scraper mines
the UI model from the remote or virtual system, and converts
it into a common Intermediate Representation (IR) of the
application. The initial IR is shipped to a client (local or
host system), where a proxy converts the IR back to a native
representation of these elements, which is suitable for use by
a local screen reader.

The IR projects all possible UI objects from a given sys-
tem onto a common, complete subset of UI elements. The



Platform Scraper kLoC Proxy kLoC

Windows 1.3 1.7
OS X 1.2 3.1
Web Browser N/A 0.7

Table 1. Sinter’s major components and lines of code.

IR is sufficiently expressive to capture any reasonable UI
object, but minimal enough to be implemented easily using
ubiquitous native widgets on any platform. The engineer-
ing work to reconstruct a model from, say Windows, on OS
X using native GUI libraries is quite simple—thousands of
lines of new code in total. The current IR design is mature
enough to support rich desktop applications as complex as
Microsoft Word. Moreover, adding interoperability with any
new platform only requires writing a new IR scraper (for re-
mote access) and native proxy application (for client access).

By operating on an abstract model of a user interface, a
Sinter proxy can manipulate the model to improve accessi-
bility, such as rearranging a cumbersome hierarchical navi-
gation into a new navigation shortcut. This model of IR pro-
gramming can also be used for non-accessibility purposes,
such as changing the sizes of buttons for access from a de-
vice with a different form-factor (e.g., accessing a desktop
application from a tablet), or streamlining a task that in-
volves navigating a complex graphical hierarchy. Using IR
programming beyond accessibility purposes is beyond the
scope of this paper, and left for future work. Transforma-
tions are described in more detail in §4.2.

The Sinter protocol relays UI inputs from the proxy back
to the scraper, and relays incremental changes in the UI
from the scraper back to the proxy. As our evaluation shows,
the Sinter protocol requires an order of magnitude lower
network traffic than a protocol that transfers screen bitmaps
or audio from a remote reader (§7).

Previous GUI frameworks, such as Java AWT, have de-
signed least-common denominator APIs for implementing
portable application graphics. Our goal is to describe the
GUI of any running application in a format that any screen
reader can understand—even if the application and reader
are running on different OSes.

Table 1 summarizes the lines of code required to im-
plement Sinter. Our current prototype includes a semantic
scraper and proxy for both Windows and OS X, as well as
an AJAX web browser proxy client. In general, these scrap-
ers and proxies are only a few thousand lines of code, which
indicates that such a wrapper would likely be equally simple
to implement and deploy on additional platforms. As a point
of comparison, the open source rdesktop [47] RDP client im-
plementation is roughly 28 kLoC, counted by sloccount [52].

Project goals. The Sinter project has the following goals:
• Provide a seamless screen reading experience for users

of remote applications with a visual impairment. Perfect

Category Types

OS Application, Window, Menu, MenuItem, Split-
Pane, Generic

Basic Graphic, Cell, Button, RadioButton, CheckBox,
MenuButton, ComboBox, Range, Toolbar, Clock,
Calendar, HelpTip

Arrangement Table, Column, Row, ListView, Grouping,
TabbedView, GridView

Navigation TreeView, Browser, WebControl
Text EditableText, RichEdit, StaticText

Table 2. Sinter’s 33 IR object types, grouped by category.

visual fidelity of applications is a non-goal, although we
do aim for usability by users without impairments, as a
secondary goal.

• Compatibility with legacy applications and screen read-
ers. In our experience, the effort to learn and customize a
given reader is very high for a visually impaired user, and
forcing a user to switch readers harms their productivity.

• Transparently improve accessibility of applications. With-
out any application or remote OS changes, Sinter can
tailor the UI of applications to the user’s preferences or
for simpler audio navigation. For instance, we demon-
strate an overlay of a most-frequently-used button “mega
ribbon” for Microsoft Word (§7.4).

Although Sinter does not modify the OS, this is not a re-
quirement. Section 6 explains several problems that would
be better fixed in the OS.

4. Sinter Intermediate Representation
The Sinter intermediate representation (IR) encodes an ap-
plication’s UI tree in a generic, XML format. The UI in-
cludes 33 object types; we selected these as a least common
substrate upon which more sophisticated UI elements can be
composed or approximated. The IR standardizes several fea-
tures that can vary by platform, such as placing coordinate
(0,0) in the top left of the screen. The IR requires that each
parent node’s area must surround all children.

Figure 3 is a screen shot of a simple application with a
Button and a ComboBox, as well as the matching IR. The IR
also includes the three buttons in the upper left corner. The
ComboBox includes a child button (the downward pointing
triangle); when clicked, the IR would change to include the
new selections visible in the drop-down window. The ID
fields are used to efficiently communicate changes to the IR
tree, between the scraper and the proxy.

The IR is designed for easy implementation on any plat-
form. In our experience, a variant of each of the 33 types
of objects (listed in Table 2) are available as native objects
on all of our target platforms. Each object type can have a
number of attributes. There are nine standard attributes, in-
cluding an ID, the coordinates on the screen, a state (e.g.,
invisible, selected, clickable), and children. Some types also



<A p p l i c a t i o n ID=” 9994 ” name=” Hel loWorld ”>
<Window ID=” 1 ” v a l u e =” Sample ” h e i g h t =” 150 ” wid th =” 212 ” l e f t =” 727 ” t o p =” 80 ”>

<Bu t ton ID=” 2 ” name=” c l o s e ” h e i g h t =” 16 ” wid th =” 14 ” l e f t =” 734 ” t o p =” 83 ” />
<Bu t ton ID=” 3 ” name=” minimize ” h e i g h t =” 16 ” wid th =” 14 ” l e f t =” 754 ” t o p =” 83 ” />
<Bu t ton ID=” 4 ” name=” maximize ” h e i g h t =” 16 ” wid th =” 14 ” l e f t =” 774 ” t o p =” 83 ” />
<Bu t ton ID=” 5 ” name=” C l i c k Me” h e i g h t =” 32 ” wid th =” 94 ” l e f t =” 786 ” t o p =” 185 ” />
<ComboBox ID=” 6 ” v a l u e =” I tem1 ” h e i g h t =” 26 ” wid th =” 99 ” l e f t =” 785 ” t o p =” 126 ”>

<Bu t to n ID=” 7 ” name=” ” h e i g h t =” 26 ” wid th =” 17 ” l e f t =” 864 ” t o p =” 126 ” />
</ ComboBox>

</ Window>
</ A p p l i c a t i o n>

Figure 3. A screenshot of a simple application for OS X (left), and simplified IR generated for this application (right).

have type-specific attributes; the Text types (EditableText,
RichEdit, and StaticText) include fonts, bold, subscripts, and
other decorations. There are 17 type-specific attributes.

We also strove for reasonable minimality: the current
elements cannot be removed without losing functionality or
are so ubiquitous that there is no advantage in removing
them. These attributes and types represent an intersection of
necessary functionality across platforms, not a union.

Our IR covers a significant fraction of the standard UI
element types on Windows and OS X. Windows has 143
types of UIs (roles) as reported by NVDA [5]. Among them,
115 are mapped to Sinter’s roles either directly, or in com-
bination with one or more role-specific properties. In OS X,
there are 54 types [4], and Sinter can map 45 of them ei-
ther directly, or in combination with one or more properties.
We have not encountered any of the remaining elements, al-
though these could result in augmenting the IR. When Sinter
encounters an element that is not explicitly mapped, includ-
ing one of these unknown standard UI types or a custom
element, it is mapped onto a Generic type in Table 2. As
long as the native element supports a text accessor method,
Sinter can at render its text, although some functionality may
be lost. If the element does not export accessibility informa-
tion, no screen reader can read it—with or without Sinter.
Based on our experience rendering fairly complex applica-
tions, such as Microsoft Word, we expect only modest addi-
tions to the IR model will be needed to cover the remaining
standard UI elements.

The examples in this paper focus on reconstructing tex-
tual and control elements, which are widely supported by
platform accessibility frameworks. We believe the IR frame-
work could also be easily extended to represent graphical
decorations for buttons and regions, such as fill colors and
images. However graphical applications, such as games, of-
ten have larger barriers to accessibility that are beyond the
scope of this work. We note that NVDA does hook graphical
libraries such as gdi32.dll [44]—an approach we could
in future work to support some graphical applications.

4.1 Complex Objects
One challenge of having a simple IR is that a scraper must
project complex UI objects onto one or more IR objects. In
general, we encode complex objects in the IR by allowing

multiple objects to occupy the same geometry, as children
under a parent object. At any point, only one object is visible.

One simple example of a complex object is a ComboBox.
A ComboBox is a combination of a text entry box, that,
when active, also drops down a list of text suggestions or
options, such as recently entered values. When a UI is ini-
tially mined from the application, a ComboBox has no chil-
dren. Once the ComboBox is clicked on, the IR is potentially
populated with a list of children. If a menu item is selected,
or text is typed in the box, the proxy client is responsible
to relay the event back to the remote scraper as if the entry
occurred in the original ComboBox (by the parent’s object
identifier). Thus, shared geometry and object identifiers en-
code complex objects.

A more complex example is a multi-personality object,
such as a Windows Breadcrumb. An example of a Bread-
crumb is the navigation bar in Windows Explorer. The de-
fault view of a Breadcrumb shows the current working direc-
tory (e.g., C:\foo\bar). When the Breadcrumb is clicked,
it behaves as a ComboBox—allowing text entry and selec-
tion of recent history. Finally, individual path components
can also be selected as drop-down menus, when moused
over. Within the UI tree, a BreadCrumb appears as a Group-
ing, and its child or children is the active personality (e.g.,
a ProgressBar (Range) or a MenuButton). Each person-
ality change adds some children to the tree and removes
others. When the Windows scraper detects a BreadCrumb, it
replaces the ProgressBar with a Grouping, as other plat-
forms cannot implement a semi-transparent progress bar,
and the proxy displays the active child personality. Rather
than forcing every platform to implement every widget,
Sinter leverages dynamic object creation and destruction to
project the active personality onto appropriate primitives.

4.2 IR Transformations
One powerful feature of Sinter is the ability to implement
accessibility features at the IR level. Current Assistive Tech-
nologies (ATs) include productivity enhancements, such as
shortcuts for faster navigation of visually-oriented menus,
and decluttering web content for easier reading [8, 9]. Al-
though it is convenient for some of these features to be bun-
dled with a reader, there is no fundamental reason these need
not have a modular, composable architecture.



nodeCB = f i n d ” . / Window / ComboBox”
nodeBT = f i n d ” . / Window / B u t t on ” , name=” C l i c k Me”
c h t y p e nodeCB L i s t
nodeCB . h e i g h t += 60
rm nodeCB . c h i l d r e n
nodeBT . l e f t += 100

Figure 4. Example IR transformation code and screenshot
for Figure 3, which replaces the ComboBox with a List,
and moves the Click Me button right.

Our insight is that many of these enhancements can be
modeled as mutations of the IR graph, and that these muta-
tions can be easily applied to the IR XML at the proxy client
(or the scraper in a few cases). We call these IR transfor-
mations. This approach is practically useful because it does
not require cooperation of application developers, who of-
ten neglect accessibility, nor does it require cooperation of
the screen reader developer, who have a limited budget for
features. Rather, this model empowers users with some pro-
gramming skill to solve their own problems. The example
transformations below are only tens of lines of code, whereas
a similar decluttering effort in a web browser, without trans-
formations, required tens of thousands of lines of code [8].

A transformation operates directly on the IR and is imple-
mented in a simple language that extends XML XPath [19]
rules with control flow (while, for, if) and simple com-
mands for XML manipulation. These commands are listed in
Table 3. Transformations run in an interpreter in the proxy
or scraper, making the code platform-independent. Figure 4
illustrates simple transformation code on the IR in Figure 3,
that replaces the ComboBox with a List and moves the
Click Me button on the right to make space for the List,
along with the resulting output image.

Transformations can implement features such as short-
cuts in navigating a complex, two-dimensional menu or rib-
bon, into a simpler, flatter structure more appropriate for
non-visual navigation. Multiple transformations can be ap-
plied to a given IR instance. Transformations may be ap-
plied only to specific applications, or on specific platforms.
This subsection includes several examples that illustrate how
transformations work, as well as their power in solving a
number of UI portability problems.

Redundant Object Elimination. One common transfor-
mation prunes out invisible state from the tree. The Grouping
type logically organizes related objects in the UI tree. Devel-
opers and UI frameworks often group related UI elements,
leading to a significant amount of otherwise invisible wrap-

Command Description

find xpath,
[condition]

Returns a node pointed by xpath and
condition. Node attributes are accessed
with “dot” syntax, such as node.id.

chtype node
type

Changes the type of node to type.

rm [-r] node Removes node, and its children with -r.
mv [-c] node
pnode

Moves node under pnode; -c only moves
children of node.

cp [-r] node
tnode

Copies node to tnode. Children are also
copied with -r.

Table 3. Sinter IR transformation syntax.

pers that only introduce overhead for the proxy. Similarly,
we eliminate redundant system-provided buttons (e.g., close
and minimize) and scrollbars, when the client system pro-
vides similar elements by default.

Topology Adjustment for Arrow Key Navigation. In most
desktop window managers, the arrow keys navigate among
elements visually. Web browsers generally break encapsula-
tion by having the arrow keys navigate the topology of the
DOM tree instead. For instance, the right arrow key gener-
ally moves the cursor to the next sibling node in the DOM
tree, which may not necessarily be to the right in the visual
coordinate plane. To address this problem, our browser client
includes a transformation that adjusts the topology of the UI
tree (and thus the DOM tree within the browser) to match
the visual hierarchy. The basic approach to this problem is
inserting table cells within a row around objects that should
be horizontally aligned.

User Preferences. Sinter allows users to customize an ap-
plication’s UI with transformations; this is particularly use-
ful to correct cumbersome artifacts after automatic button
resizing. From the user’s perspective, she manually moves
buttons around and saves the preference for the future.

More generally, a transformation can replicate or move
specific elements to different regions of the screen. As one
proof of concept, we made a “mega-ribbon” for Word, which
a user can use to avoid ribbon navigation for frequently-used
buttons. The mega-ribbon is inserted on the left edge of the
screen, and other items are shifted right. The mega-ribbon is
automatically populated based on frequent actions.

Look-and-Feel Emulation. For an infrequent user of an
unfamiliar system, say a Windows user infrequently access-
ing a Mac, a familiar navigation experience can flatten the
learning curve. We implemented an example IR transforma-
tion that causes OS X’s Finder to have a similar look-and-
feel (at least from the perspective of a screen reader) as using
Windows Explorer (§7.4). We believe such a feature can im-
prove productivity of infrequent cross-system users, which
we will study in future work.



To Scraper
Message Description

list Request a list of open processes and associated win-
dows.

IR window Request a complete IR tree of a window.
input Send keyboard & mouse input, such as keystroke(s),

coordinate of click, number of clicks, and click types.
action Send action such as bring a window in the foreground,

dialog open/close, menu open/close.

To Client Proxy
Message Description

IR full Send complete IR.
IR delta Send IR changes.
notification Send System and User notifications.

Table 4. Messages in the Sinter’s client/scraper protocol.

5. Proxy Client
The proxy client renders the remote application on the user’s
local machine. At a high level, the proxy takes the IR as
input, and dynamically generates an application UI using
native APIs. The network protocol between the proxy and
remote scraper (§6) is asynchronous and stateful. The proxy
relays user input and the scraper relays deltas to the IR. The
protocol is summarized in Table 4.

When the client first connects to the scraper, the client
queries the scraper for a list of all running applications on
a given desktop session. In a production deployment, the
connection would first be authenticated on the remote host,
which we expect would be straightforward and orthogonal
to the research goals of Sinter. The Sinter client can create
a proxy application window for each remote application; for
the sake of simplicity, we focus discussion on how the proxy
represents a single application. Similarly, a user can run
multiple proxies for applications on different remote servers.

Once a proxy is started for an application, the proxy re-
quests a complete IR of the application from the scraper.
Once the IR is received, the proxy first applies transforma-
tions to the tree (§4.2), then recursively walks the tree to ren-
der each object into equivalent native UI library primitives.
After each object is created, the proxy monitors each object
for user input, as appropriate.

The connection to the remote scraper is stateful, in or-
der to incrementally update the client. The client initially
requests a full IR of the current UI state. As the scraper
observes changes to the UI, the scraper sends deltas to the
client. Each object in the IR includes a unique identifier
(“ID” in Figure 3); the scraper keeps the mapping of IR iden-
tifiers to remote OS abstractions only as long as the connec-
tion is open. If the connection is disconnected, this table is
garbage collected. After disconnection the proxy cannot as-
sume previous objects or IDs are still valid, and must com-
pletely re-read the application IR.

Once the initial rendering is complete, the proxy client
executes in a simple event loop. As clicks, keystrokes, or
other input is observed, messages are asynchronously re-
layed to the scraper. The proxy does not block for any re-
sponses, to ensure local responsiveness. For our motivating
case of screen readers and other assistive technologies, this
is an important feature, as the client screen reader can nav-
igate and read elements on the screen concurrently with re-
laying keystrokes and updates over the network. As IR delta
messages arrive from the scraper, the messages are inserted
into the proxy’s event queue. When a scraper delta is pro-
cessed, transformations are applied if appropriate, and then
the native UI state is updated appropriately.

Finally, the current prototype has the invariant that only
one proxy may connect to each application at a time. We do
not believe there is anything fundamentally difficult about
keeping two proxy replicas in a consistent state with each
other and the scraper, which we leave for future work.

5.1 Coordinate and Cursor Projection
Because transformations can perturb window geometry, Sin-
ter includes the ability to project coordinates back to the
original application layout. In contrast, most remote desktop
systems require the client and server to agree on a geometry.

Most remote systems represent mouse movements and
clicks in terms of screen geometry; when these events are re-
layed back to the scraper, the coordinates must be projected
back from the client’s possibly-transformed geometry. Oth-
erwise, clicks intended for a specific button or other element
may not be delivered to the correct component. Keyboard
navigation and cursor placement face a similar problem: if a
text box is re-wrapped at a client, simply relaying the “up”
arrow can cause the cursor position to diverge between the
proxy and remote applications.

To address this problem, each Sinter proxy constructs a
reverse coordinate map for the screen, which maps client
screen coordinates back to remote screen coordinates. If an
IR object is repositioned or resized on the remote system
or by a transformation during the course of execution, these
offsets are adjusted appropriately on the proxy.

Similar challenges are faced with wrapping text on a
smaller screen. One can either rewrap text for easier arrow
key navigation (avoiding horizontal scroll bars), or preserve
WYSIWYG navigation for typesetting. Rewrapping text is
optional and configurable at the proxy client, depending on
the user’s goals for the document—reading versus composi-
tion and layout.

Similar to the reverse coordinate map, rewrapped text
boxes must catch arrow key navigation events (“Up” or
“Down”) and manually set the cursor onto a different relative
position in the remote text box. Each text element keeps a
reverse character position mapping, and relays an equivalent
series of arrow-key movements to the remote scraper.



5.2 Web Browser Client
To demonstrate the versatility of the Sinter IR, and for ad-
ditional usability, we also implemented a JavaScript proxy
that can run in a browser. Our in-browser proxy is compat-
ible with in-browser screen readers. In-browser readers are
becoming increasingly popular for users of public terminals
or OSes with minimal support for native applications, such
as Chrome OS. In-browser reading has the obvious limita-
tion that it can only read web content, and cannot reach out
to the local (or remote) desktop; the Sinter in-browser proxy
expands the reach of in-browser reading.

We wrote a web front-end for a scraper using Ruby on
Rails—Ruby version 2.0.0p481 on Rails version 4.2.0, run-
ning Rails default server. We verified that this client can be
read by the ChromeVox [46] in-browser screen reader.

When a web browser connects to the Ruby web service,
the browser loads a page that includes our JavaScript proxy.
The JavaScript proxy then communicates with the scraper
via the Ruby web service—initially requesting the complete
IR, and then relaying events and IR deltas over http. Be-
cause the IR is implemented using XML, this proxy was a
fairly straightforward AJAX-style application.

Because HTTP is stateless, the web server-side applica-
tion maintains a connection to the scraper and buffers pend-
ing updates. The JavaScript client uses a cookie to collect up-
dates since the last connection. If a client arrives for the same
application with a different cookie, the session is ejected
and a new session is created. A final difference between
AJAX and the Sinter protocol is that it is more natural for a
JavaScript client to poll the remote system, rather than have
the server push updates to the client.

In order to balance responsiveness with bandwidth con-
sumption, we use a bounded exponential back-off heuristic
during idle periods. In other words, when the user has just
interacted with the application or the server has relayed a
change back to the application, the timer is set for 1 second.
If the timer fires and there are no updates from either side,
the timer interval is doubled. In a production system, the cor-
rect behavior at this point might be to gray the window and
stop setting the timer until a user manually restores the con-
nection. We leave tuning idle behavior for future work.

Our browser client case study demonstrates the generality
of the Sinter IR and model. As more applications are moved
to web variants, such as Google Docs and Microsoft Office
365, the Sinter scraper and browser proxy can be viewed as
a simple way to make basic, web variants of legacy applica-
tions, for users with and without visual impairments.

6. Remote Scraper
The final component of Sinter is the scraper, which runs on
the remote system to collect the IR and replay client events
to the remote application. Much of the scraper’s work is
using platform-specific accessibility and automation APIs
to collect a logical model (UI tree) of the application. The

platform-specific objects must be translated into the IR, and
then shipped to the client proxy. As part of the initial IR
construction, the scraper also creates an internal model of
the application, with references to the accessible object (i.e.,
the wrapper for the UI element used to retrieve accessibility
metadata, including alternate text).

Once the initial IR is constructed, the scraper monitors
the application for changes to any UI element. Notifica-
tion APIs, such as SetWinEventHook, StructureChangedE-
vent, and PropertyChangedEvent on Windows [37, 39],
and AXObserverAddNotification [14] on OS X, allow the
scraper to register for updates from a given process. As
messages arrive, the message includes a reference to the
accessible object. The scraper then queries the state of the
accessible object to identify the potential changes, and com-
pares these changes against its internal model. The scraper
relays any changes to the client. The scraper also maintains
a table mapping IR-level, integer IDs onto system-specific
identifiers or handles.

The scraper listens on a socket for messages from the
proxy client. Most commonly, these messages require the
scraper to synthesize keystrokes or mouse events on the re-
mote system, using OS-specific routines such as user32.-
mouse event or user32.SendInput on Windows, or
CGEventPost on OS X.

The primary challenges we faced in building scrapers for
both Windows and OS X were unreliable or idiosyncratic be-
havior in the accessibility APIs. The following subsections
describe two categories of issues, and how the Sinter design
robustly encapsulates them. Solutions initially designed for
one OS, say Windows, proved useful on the other for similar,
but not the same, reasons.

6.1 Reliable Object Identifiers
In order to calculate and relay incremental changes of the
UI’s logical state, the scraper must maintain a model of the
UI objects and their states. Ideally, the OS would expose
changes as a simple, batched delta with unique identifiers.
Instead, current OS APIs return one notification with a han-
dle to each object that is modified, removed, or added.

To minimize network traffic, each scraper maps these
notifications onto an internal model of the UI, and calculates
a more precise, batch delta to send to the proxy.

The challenge is that the handle included in this notifi-
cation may not include a unique identifier (OS X), or the
identifier for the same object may change (older versions of
Windows). Newer Windows applications, compatible with
the UIAutomation standard, do include such a robust iden-
tifier [40]. Older, legacy applications, may only be compat-
ible with the older MSAA standard, which can change the
OS-provided identifier without warning. In other words, for
an MSAA-compatible application, a notifications for a value
change event can arrive which refers to a completely new
object ID (and accessible object wrapper). Upon further in-



spection, however, the new object’s contents, such as place-
ment, size, and text, are otherwise indistinguishable from a
previous object already cached in the system. Moreover, the
original object is no longer referenced in future notifications.
This unreliable behavior is documented, but the root cause is
not clearly explained. New object ID assignment most com-
monly happens when minimizing and restoring a window,
which leads us to suspect this is breaking encapsulation of
library-internal garbage collection.

In order to reliably track objects, both the Windows
and OS X scrapers organize their model of objects into a
hashmap. The hash function uses object fields that are ex-
pected to be stable, including the object type, as well as the
objects’ position in the UI graph. For instance, the OS X
scraper’s hash function also includes the path from the ob-
ject to the nearest ancestor with a stable object ID. When an
update occurs for an object, the stable fields are hashed and
the scraper searches the appropriate bucket for matching IDs
and likely matches (i.e., all stable fields match except for the
OS-provided ID).

Likely matches are evaluated by walking both objects to
a common ancestor object in the UI tree. From the ancestor,
each node in the tree is checked that the contents are topo-
logically and visually identical (same structure, same coor-
dinates). If the path from the common ancestor is identical,
and the nodes themselves are otherwise similar, the scraper
assumes the objects are the same. Thus far, this strategy has
proved sufficiently robust that we have not encountered any
lost or mis-delivered updates.

Hashing UI elements by content and topology robustly
maps OS-level notifications to IR-level identifiers, encapsu-
lating platform-specific object ID behavior. Moreover, this
technique dramatically reduced Sinter’s bandwidth require-
ments compared to earlier prototypes.

6.2 Repeated, Verbose, and Lost Notifications
On both OS X and Windows, the update notification mech-
anism is rather verbose; we found that sending all updates
by rote induces significant bandwidth costs. Both OSes also
drop notifications if updates are not processed fast enough.

In the case of OS X, notifications for value changes are
often raised multiple times for no clear reason. In Windows,
notifications are not repeated, but the default mechanism to
ask for all changes, called a structure change notification, is
too verbose. For instance, one might use a structure change
notification to tell when a tree is expanded. In principle,
Windows includes a batch notification mechanism, but it is
the application programmer’s job to tell Windows when to
use it [38], as opposed to Windows transparently setting a
threshold of pending notifications to switch to batch mode;
we have yet to find an application that enables this mech-
anism. Sinter includes a robust batch-notification wrapper
based on several additional strategies.

First, on Windows we use domain-specific knowledge to
identify a minimal set of notification events for structure
changes, such as collapsing a tree or replacing the contents
of a panel. Dialing down the verbosity of notifications made
a first-order performance difference. For instance, the aver-
age time to scrape a tree expansion dropped from 600 ms
down to 200 ms.

Second, we re-batch rapid notifications. Similar to in-
terrupt handling with a separate “top half” and “bottom
half”, the scraper’s notification handler marks an element as
stale, and returns to the OS as quickly as possible. Once a
burst of notification activity subsides, the scraper returns to
the highest non-stale ancestor in the UI tree and re-queries
all children. Reprobing also addresses the case where some
notifications are lost after a large subtree is replaced.

Third, we use periodic background scans, during idle
time, to detect any other stale objects in the model. With a
reliable notification mechanism, this would not be necessary,
but we have found several cases where the accessibility API
simply does not deliver notifications, especially when an
object is removed. In fact, the OS X API explicitly says
that only certain object creation events can be treated as
reliable [36], effectively forcing assistive software writers to
eschew efficient caching for less-efficient, brute-force scans.

Finally, the scraper filters notifications for updates al-
ready reflected in its internal UI model. Notification filtering
addresses both repeated value changes, and (effectively) re-
peated notification of new objects appearing in the UI tree,
preventing needless network traffic to the proxy.

7. Evaluation and Case Studies
The evaluation of this work answers the following questions:
• How do Sinter’s overheads compare to other remote ac-

cess protocols? (§7.1)
• Is the system reasonably robust for cross-platform UI

rendering? (§7.2)
• Are users with visual impairments able to use Sinter to

access remote applications? (§7.3)
• Is the IR transformation model sufficient to implement

non-trivial accessibility enhancements? (§7.4)
These questions are addressed with both quantitatively and
qualitatively in the following subsections.

All Windows measurements use Windows 7 64-bit. The
test system is a ThinkPad W550s, with a 4-core 2.6 GHz
Core i7 CPU, 16 GB DDR 3 RAM, and a 250 GB SSD HDD.
Our OS X measurements were collected on a MacBook Pro
with a 8-core 2.8 GHz Core i7 CPU, 8 GB DDR3 RAM,
and a 500 GB SSD HDD running OS X version 10.11. For
network measurements, the machines were connected by a
private Gigabit network.

7.1 Microbenchmarks
This subsection measures bandwidth and interaction latency
of several remote access protocols. We use instrumented



versions of Sinter, NVDARemote [6], and FreeRDP open-
source RDP client [28]. We measure bandwidth using Mi-
crosoft RDP client for Mac version 8.0.26, erring on the
side of a more mature client where instrumentation is not
required. To measure latency, all clients collect the time
when a keystroke is pressed on the local machine, as well
as the time when the last packet is received following that
keystroke. For measurements with a remote screen reader,
we collect the time when the last audio packet is received by
the local machine. In order to minimize unnecessary artifacts
during RDP, we configure FreeRDP client to disable the
wallpaper, menu-animation, aero theme, and font smooth-
ing in Windows. Finally, the screen resolution of Windows
is set to 1280× 720.

NVDARemote works by intercepting text from the re-
mote screen reader just before audio synthesis, and synthe-
sizes audio at the client. We note that NVDARemote is not
a fair comparison, as it does not work across screen read-
ers, much less different OSes. NVDARemote also does not
support mouse interactions. In contrast, Sinter and RDP are
cross-platform.

We measured the response times to a set of tasks, scripted
with Keyboard Maestro V.7.0.3. These tasks were all run
from the local MacBook Pro, accessing the remote Windows
Laptop. Because NVDARemote only works on Windows,
we ran the client in a VirtualBox VM on the Macbook.

We measure three types of operations:
1. Rich text editing with Microsoft Word.
2. Using Windows Explorer and regedit to explore, expand,

and collapse nodes in a directory tree. Each element in
the tree is walked.

3. Updates to a list of items. We measure time to observe
changes to the sorted process list in Task Manager, and
time to select a different folder in Windows Explorer (and
the right panel changes contents). When a view changes,
the elements are traversed with the arrow keys.

Bandwidth. Table 5 measures the bandwidth requirements
of each protocol. Across all of the traces, the bandwidth
requirements, both in terms of data and packets sent, are an
order of magnitude lower for Sinter than RDP. This stands
to reason, as graphical updates simply require more data
than logical updates to the UI model. To be clear, most
users consider the costs of RDP acceptable, especially on a
local area network. However, on a slower, wide-area network
(WAN), or a pay-per-byte cellular link, a tenfold bandwidth
reduction is considerable.

Sinter’s bandwidth requirements are comparable to NVDA-
Remote, although Sinter consistently requires fewer round-
trips. The difference is how Sinter batches updates: when
more of the batch is used locally by subsequent opera-
tions, as in Calculator, net bandwidth is lower. In contrast,
NVDARemote will spend more round-trips and bandwidth
exploring unchanged Calculator UI elements on the remote
server. On the other extreme, Word has significant churn in

Alone With Reader
App Protocol KB Packets KB Packets

Calc
Sinter 47 171 47 171
RDP 2,013 2,502 2,663 4,622
NVDARmt - - 384 3,885

Explorer
Sinter 151 374 151 374
RDP 1,104 2,223 4,457 7,484
NVDARmt - - 121 749

Word
Sinter 223 513 223 513
RDP 2,486 3,873 2,990 5,975
NVDARmt - - 119 910

Table 5. Network traffic for several application traces for
Sinter, RDP, and NVDARemote. The “Alone” columns show
remote access; the “With Reader” columns add Apple’s
VoiceOver reading from the Sinter proxy, and RDP relaying
audio from the NVDA Screen Reader. Lower is better.

its UI elements, and some of these updates are never used
by the scripted client on Sinter; by lazily exploring UI el-
ements, NVDARemote reduces bandwidth. We believe this
difference can be bridged in future work with an adaptive
heuristic that batches fewer updates when most of the batch
is not used. In either case, Sinter and NVDARemote have
comparably low bandwidth, but Sinter offers more function-
ality, such as IR transformations and cross-OS reading.

Interaction Latency. To simulate different network types
such as a WAN and 4G, we use Microsoft’s Network Em-
ulator for Windows Toolkit (NEWT) v2.1. The WAN is
configured as having 30 millisecond round-trip delay, 20
Mbps download speed, and 5 Mbps upload speed, as mea-
sured over one of the author’s home ISP. The round-trip de-
lay in the 4G network is configured at 70 millisecond, and
the download and upload speeds are set to 3.25 Mbps and
0.75 Mbps respectively—a current average as reported by
FierceWireless [1].

Figure 5 shows cumulative distribution function (CDF)
plots of the response times for each series of operations
on simulated WAN and 4G network connections. The CDF
plot shows the fraction of time that the system’s response to
user input was less than a given latency. Based on anecdotal
discussion with blind users, we believe 500 milliseconds is
the upper bound on acceptable response latency, indicated
by the black vertical line in the figures.

For experiments on a WAN using RDP, 91–99% of re-
quests receive responses in under 500ms. Adding audio over
RDP drops this range to 7–70% of packets, indicating that
most users will notice significant lag in relaying audio from a
remote screen reader. In contrast, 99-100% of Sinter’s pack-
ets are under 500ms, except for Word, at 90% (comparable
to RDP’s 92%). Word is unique in that there is a significant
volume of dynamic control windows that change on the fly,
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Figure 5. Cumulative distribution function (CDF) plots of interactive response times for three categories of operations over
simulated WAN (left) and 4G (right) networks. The top row is text editing in Word. The second row is tree-based navigation in
Windows Explorer and Regedit. The third row is updates to a list view in Task Manager and Windows Explorer.

generating additional traffic. These reductions in latency cor-
relate with a reduction in synchronous network round trips.

In the case of the simulated 4G network, Sinter and RDP
without audio are fairly comparable: all experiments range
from 92–99% of requests being serviced in 500ms or less.
Relaying audio over a 4G connection exacerbates the over-
heads of the approach, dropping the percent of requests ser-
viced in under 500ms to 0–43%.

In most cases, Sinter latency is comparable to NVDARe-
mote. Sinter services a higher fraction of interactions imme-
diately from local state on Sinter for all workloads, and the
worst-case latency is comparable in most cases. The excep-

tion is Word, yielding a trade-off with update batching, ex-
plained above, which we expect can be tuned with an adap-
tive batching heuristic.

In general, the performance of relaying audio is much
worse for complex updates, like collapsing a tree or replac-
ing a list view (the bottom four graphs). Most of these inter-
actions have latencies above one second, except for list up-
date on a WAN, for which more than 40% of requests take
over 400 ms. The issue with remote audio synthesis is that
each item explored introduces a synchronous round trip. In
contrast, Sinter can read each item in the list from the local
representation.



These results indicate that, except on a very fast network,
relaying audio will not be usable. For good performance, the
client must generate audio locally from a a more compact,
logical representation. The generality of the Sinter model
comes at little-to-no cost relative to simply relaying text
for local speech synthesis, and can optimize a number of
common cases and improve functionality.

7.2 Cross-Platform Remote Access
To demonstrate the relative maturity of the Sinter IR design,
we show a range of application interfaces virtualized and
displayed on platforms other than the one they were writ-
ten for. The Windows applications accessed from OS X are
illustrated in Figure 6, and include Microsoft Word, Win-
dows Calculator, Windows Explorer, the Windows registry
editor, and the DOS command line (command.exe). The
Mac applications accessed from Windows are shown in Fig-
ure 7 and include Apple Mail, HandBrake (a media ripping
and transcoding utility), Messages, Calculator, and Contacts.
Figure 8 shows a proxy running in Google Chrome and ac-
cessing both Windows Explorer and command line.

This wide array of applications demonstrates that the Sin-
ter framework is sufficiently robust for cross-platform UI
rendering. As we have added support for each new appli-
cation, the incremental effort has decreased, and the churn
has mostly been within the scraper to translate increasingly
arcane objects to the Sinter IR. That said, there is a long tail
of additional applications to test, most notably highly-visual
applications such as PowerPoint.

We tested the browser proxy for interoperability with the
ChromeVox [46] in-browser screen reader. We were able to
navigate all test applications by audio, indicating that these
techniques can be composed.

We note that several of the screenshots need additional
work to be usable by user without a visual impairment, such
as the small text on buttons in our Word screenshot. We ex-
pect this can be addressed in future work by either optionally
including images for the buttons, or using a transformation
to adjust the layout to enforce minimal button and font sizes.

7.3 User Focus Group
We conducted a preliminary, IRB-approved, user focus
group at the Lighthouse Guild in New York [2], with 21
subjects who are either blind (18/21) or have extremely low
vision (3/21). We had them do several simple tasks with Sin-
ter. In general, all of the 21 users responded positively to
the user experience and would be interested in using Sinter
again. We leave a larger-scale user study for future work, but
these results indicate that our prototype has made a signifi-
cant improvement to usable remote access.

7.4 IR Transformations
This section provides examples of the power of the IR pro-
gramming model to implement additional accessibility sup-
port, transparently to applications. Here we list two substan-

tial examples of IR transformations we implemented in a un-
der one hundred lines of code each.

Mega-Ribbon. Figure 6 shows one form of automatic ad-
justment for simpler navigation of ribbons. Anecdotally,
blind users have found ribbon navigation cumbersome. This
screen shot shows Microsoft Word with an extra “mega rib-
bon” on the left. The mega ribbon shows up to the 10 most
frequently used buttons for faster access. This transforma-
tion also shifts the text box to the right, and is implemented
entirely transparently to Word. We expect the ability to
streamline navigation with transformations will be of value
to users with vision impairments.

Mac Finder with Windows Explorer Look-and-Feel. A
significant fraction of blind desktop users use Windows [7].
If a blind user were asked to occasionally use a Mac for
work, we expect that this transition would be simplified by
masking navigation differences. Thus, we wrote a transfor-
mation that makes the navigation in Finder similar to navi-
gating Windows Explorer, at least from the perspective of a
screen reader, shown in Figure 9.

8. Related Work
This section reviews essential related work, grouped into re-
mote access techniques, and assistive technology portability.

8.1 Remote Access
Remote Desktop Protocol (RDP) [42], ICA [32], VNC [48],
PCoIP [50], and other protocols for remote access and vir-
tual machines [13, 18, 34, 49], are based on “screen scrap-
ing”, where the bitmap in a virtual graphics frame buffer is
collected and shipped over the network. RDP has extensi-
ble channels, which can be used for audio or even to export
some advanced graphics, such as for Aero effects. These sys-
tems do not support screen reading from the client—only by
exporting audio from the server.

The JAWS and NVDA screen readers have recently in-
troduced remote access features, which essentially work by
replaying navigation events remotely and then relaying a
stream of text, which is then synthesized on the local com-
puter [6, 21]. These only work with the same reader and OS
on both ends. This paper demonstrates that an semantics-
preserving, IR-based approach can generalize this approach
across platforms with low bandwidth requirements.

THINC [18] retains some semantic information about
bitmaps and shapes in the display to optimize thin client
performance and minimize network traffic. pTHINC [34]
can resize or zoom a display for a mobile device, but this
work is pushed to the server (as in other remote access
systems), not done on an IR. To our knowledge, no THINC
variant addresses accessibility.

8.2 Portability of Assistive Technologies
In-browser readers, such as WebAnywhere [20] and Chrome-
Vox [46] are the state of the art in fully-portable assistive



Figure 6. Windows applications, accessed remotely on an OS X client, using Sinter. Clockwise From the top left: Microsoft
Word, the Windows registry editor (regedit) Windows Explorer, Windows Calculator, and the Windows command line
(cmd.exe). Word also displays the mega ribbon on the left hand side, automatically saving the most frequently used buttons.

Figure 7. Mac applications, accessed remotely on a Windows client, using Sinter. Clockwise from the top left: Apple Mail,
Apple Contacts, Apple Calculator, Apple Messages, and HandBrake (media ripping and transcoding utility).



Figure 8. Windows Explorer and Command Line, accessed
remotely by a Chrome browser client.

Figure 9. Mac Finder converted to the look-and-feel of
Windows Explorer using an IR transformation. Original in
foreground, Windows look-and-feel in background.

technologies (AT)—a screen reader that runs entirely in the
web browser. These in-browser readers directly access the
browser’s DOM tree for content. Naturally, their utility is
limited to reading web content, and is not designed to read
local or remote desktop applications; our in-browser proxy
client extends these solutions to desktop applications.

Several projects, including Adobe Reader [30] and Mozilla
Firefox [3] include platform-specific wrappers for the appli-
cation to program against a unified accessibility API. On a
given platform, this wrapper maps Mozilla’s API onto the
native accessibility API. Sinter addresses a complementary
problem: making unmodified screen readers inter-operable

with different platforms. Gonzalez and Reid proposed a sim-
ilar wrapper architecture for implementing portable screen
readers [30], but this proposal only generalizes an old ver-
sion of Windows screen reading APIs, and, to our knowl-
edge, was never implemented.

Prefab [22, 23] applies computer vision to reconstruct se-
mantic knowledge, such as text and tables, from a screen im-
age. Similar techniques have been used to work around defi-
ciencies in accessibility APIs [33], but this is more expensive
and error-prone than retaining the semantic information.

Cider [12] allows iOS and Android apps to run on the
same platform, by introducing wrappers between differ-
ent system services. Apportable [17] automatically cross-
complies iOS apps written in Objective-C to native Android
apps. In both cases, it is unclear whether the platform cor-
rectly supports screen readers, a source code is not available
for either project. Sinter’s IR strategy could simplify this
engineering effort considerably.

9. Conclusion
Sinter demonstrates that semantic virtualization of user in-
terfaces is feasible to implement, and can more efficiently
address the needs of users with visual impairments than re-
laying hardware-level events, such as video or audio. Sin-
ter is sufficiently robust to replicate and read a wide array
of application user interfaces on several platforms, includ-
ing Windows, OS X, and in a browser. We believe the IR
transformation model has potential to spur innovation in pro-
ductivity enhancements for users in general, by transparently
and easily modifying user interfaces.

This paper also identifies a number of cases in which cur-
rent accessibility APIs create needless difficulties for ATs.
Specifically, most OSes do not provide reliable or batched
notifications of changes and frustrate attempts to cache ex-
pensive information. Sinter encapsulates these problems, but
could be more efficient if OSes addressed these shortcom-
ings or adopted the Sinter model directly.
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